Advertisement

People and Social Interaction: Drivers of Service Innovation

  • Cheryl A. KieliszewskiEmail author
  • Laura Challman Anderson
Chapter
Part of the Service Science: Research and Innovations in the Service Economy book series (SSRI)

Abstract

Building an understanding of service innovation and how to foster it continues to be an important topic to academics and practitioners alike. This chapter examines service innovation from the vantage point of the service team. We introduce a research framework utilizing digital trace data from service team interaction and activity system analysis. An example research scenario illustrates the application of the research framework using email, meeting transcripts, and system application logs to work towards a broad and more real-time perspective of team interaction to identify innovation. We note that changes in the ebb-and-flow of service team activity and the appearance of unique signals may be a starting point. The challenge is to determine which metrics in the analyses are representative of innovation and how to automate the aggregated view to create a timeline of activity that will identify the emergence and impact of innovation. Future research opportunities include automated activity system analysis, the development and validation of metrics to measure service innovation, and the incorporation of an economic perspective.

Keywords

Service innovation Interaction Trace ethnography Cultural-historical activity theory (CHAT) Activity system analysis Service team Service system Information sharing Socio-technical system Service science 

References

  1. Al-Ani, B., Bietz, M.J., Wang, Y., Trainer, E., Koehne, B., Marczak, S., Redmiles, D. & Prikladnicki, R. (2013). Globally distributed system developers: their trust expectations and processes. In Proceedings of the 2013 conference on Computer supported cooperative work, 563-574. ACM.Google Scholar
  2. Anderson, L. C., & Kieliszews ki, C. A. (2018). Using digital trace analytics to understand and enhance scientific collaboration. In Ahram T. (eds) Advances in Artificial Intelligence, Software and Systems Engineering. AHFE 2018. Advances in Intelligent Systems and Computing, vol 787, 195–205. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-94229-2_19Google Scholar
  3. Anderson, L. C., & Kieliszewski, C. A. (2015). Co-creative aspects of data-driven discovery. Procedia Manufacturing, 3, 3440–3447.CrossRefGoogle Scholar
  4. Brodie, R. J., Hollebeek, L. D., Jurić, B., & Ilić, A. (2011). Customer engagement: conceptual domain, fundamental propositions, and implications for research. Journal of Service Research, 14(3), 252–271.  https://doi.org/10.1177/1094670511411703CrossRefGoogle Scholar
  5. de Montjoye, Y.A., Stopczynski, A., Shmueli, E., Pentland, A., & Lehmann, S. (2014). The strength of the strongest ties in collaborative problem solving, scientific reports, 4. http://www.nature.com/srep/2014/140613/srep05277/full/srep05277.html
  6. Durst, S., Mention, A.L., Poutanen, P. (2015). Service innovation and its impact: what do we know about? Investigaciones Europeas de Dirección y Economía de la Empresa, 21, 65–72.CrossRefGoogle Scholar
  7. Ellis, D., & Haugan, M. (1997). Modelling the information seeking patterns of engineers and research scientists in an industrial environment. Journal of Documentation, 53(4), 384–403.  https://doi.org/10.1108/EUM0000000007204CrossRefGoogle Scholar
  8. Engeström, Y. (2008). From teams to knots: Activity-theoretical studies of collaboration and learning at work. Cambridge University Press.Google Scholar
  9. Engeström, Y. (2000). Activity theory as a framework for analyzing and redesigning work. Ergonomics, 43(7), 960–974.CrossRefGoogle Scholar
  10. Eppich, W., & Cheng, A. (2015). How cultural-historical activity theory can inform interprofessional team debriefings. Clinical Simulation in Nursing, 11(8), 383–389.  https://doi.org/10.1016/j.ecns.2015.05.012CrossRefGoogle Scholar
  11. Fidel, R., & Green, M. (2004). The many faces of accessibility: engineers’ perception of information sources. Information Processing & Management, 40(3), 563–581.CrossRefGoogle Scholar
  12. Finsterwalder, J. (2018). A 360-degree view of actor engagement in service co-creation. Journal of Retailing and Consumer Services, 40 (Supplement C), 276-278.  https://doi.org/10.1016/j.jretconser.2016.08.005CrossRefGoogle Scholar
  13. Fliess, S., Dyck, S., & Schmelter, M. (2014). Mirror, mirror on the wall–how customers perceive their contribution to service provision. Journal of Service Management, 25(4), 433-469.CrossRefGoogle Scholar
  14. Friedman, B.D., Burns, M.J., & Cao, J. (2014). Enterprise social networking data analytics within Alcatel-Lucent. Bell Labs Technical Journal, 18(4), 89-109.  https://doi.org/10.1002/bltj.21648CrossRefGoogle Scholar
  15. Frost, R., & Lyons, K. (2017). Service systems analysis methods and components: a systematic literature review. Service Science, 9(3), 219–234.CrossRefGoogle Scholar
  16. Geiger, S., & Ribes, D. (2011). Trace ethnography: following coordination through documentary practices. HICSS’11.44th Hawaii International Conference on System Sciences, Kauai, HI, pp. 1-10.Google Scholar
  17. Geiger, S., & Ribes, D. (2010). The work of sustaining order in Wikipedia: the banning of a vandal. CSCW’10.Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work (CSCW), ACM, New York, pp. 117-126.Google Scholar
  18. Hertog, P. D. (2000). Knowledge-intensive business services as co-producers of innovation. International journal of innovation management, 4(04), 491-528.CrossRefGoogle Scholar
  19. Hoegl, M. & Gemuenden, H.G. (2001). Teamwork quality and the success of innovative projects: A theoretical concept and empirical evidence. Organization science, 12(4), 435-449.CrossRefGoogle Scholar
  20. Hsu, J. S.-C., Chu, T.-H., Lin, T.-C., & Lo, C.-F. (2014). Coping knowledge boundaries between information system and business disciplines: An intellectual capital perspective. Information & Management, 51(2), 283–295.  https://doi.org/10.1016/j.im.2013.12.005CrossRefGoogle Scholar
  21. Immonen, M., Sintonen, S., & Koivuniemi, J. (2018). The value of human interaction in service channels. Computers in Human Behavior, 78(Supplement C), 316-325.  https://doi.org/10.1016/j.chb.2017.10.005CrossRefGoogle Scholar
  22. Jackson, C., Anderson, L.C., and Kieliszewski, C.A. (2018, in review). Trace Ethnography as a Method: Identifying Scientific Discovery. CSCW Conference submission, 2018.Google Scholar
  23. Kieliszewski, C. A., Anderson, L. C., & Stucky, S. U. (2014). A case study: Designing the service experience for big data discovery. Advances in The Human Side of Service Engineering, 1, 460.Google Scholar
  24. Lungeanu, A., & Contractor, N. S. (2014). The effects of diversity and network ties on innovations: the emergence of a new scientific field. American Behavioral Scientist, 59(5), 548–564.  https://doi.org/10.1177/0002764214556804CrossRefGoogle Scholar
  25. Lusch, R. F., & Nambisan, S. (2015). Service innovation: a service-dominant logic perspective. MIS quarterly, 39(1), 155-176CrossRefGoogle Scholar
  26. Lyons, K., & Tracy, S. (2013). Characterizing organizations as service systems. Human Factors and Ergonomics in Manufacturing & Service Industries, 23(1), 19–27.CrossRefGoogle Scholar
  27. Maglio, P. P., & Spohrer, J. (2008). Fundamentals of service science. Journal of the academy of marketing science, 36(1), 18-20.CrossRefGoogle Scholar
  28. Nielsen, M. W., Alegria, S., Börjeson, L., Etzkowitz, H., Falk-Krzesinski, H. J., Joshi, A., … Schiebinger, L. (2017). Gender diversity leads to better science. Proceedings of the National Academy of Sciences, 114(8), 1740–1742.  https://doi.org/10.1073/pnas.1700616114CrossRefGoogle Scholar
  29. Oliveros, M. E. G., Halliday, S. V., Posada, M. M. B., & Bachmann, R. (2010). Contradictions and power play in service encounters: an activity theory approach. Cadernos Ebape. Br, 8(2), 353–369.Google Scholar
  30. Olson, G. M., & Olson, J. S. (2000). Distance matters. Human-Computer Interaction, 15(2), 139–178.CrossRefGoogle Scholar
  31. Ordanini, A., & Parasuraman, A. (2011). Service innovation viewed through a service-dominant logic lens: a conceptual framework and empirical analysis. Journal of Service Research, 14(1), 3–23.  https://doi.org/10.1177/1094670510385332CrossRefGoogle Scholar
  32. Ostrom, A. L., Bitner, M. J., Brown, S. W., Burkhard, K. A., Goul, M., Smith-Daniels, V., … Rabinovich, E. (2010). Moving forward and making a difference: research priorities for the science of service. Journal of Service Research, 13(1), 4–36.CrossRefGoogle Scholar
  33. Pentland, A. (2014). Social physics: How good ideas spread - the lessons from a new science. Penguin.Google Scholar
  34. Salazar, M. R., Lant, T. K., Fiore, S. M., & Salas, E. (2012). Facilitating innovation in diverse science teams through integrative capacity. Small Group Research.  https://doi.org/10.1177/1046496412453622CrossRefGoogle Scholar
  35. Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41(1), 643–681.  https://doi.org/10.1002/aris.2007.1440410121CrossRefGoogle Scholar
  36. Spohrer, J., Maglio, P. P., Bailey, J., & Gruhl, D. (2007). Steps toward a science of service systems. Computer, 40(1).CrossRefGoogle Scholar
  37. Storbacka, K., Brodie, R. J., Böhmann, T., Maglio, P. P., & Nenonen, S. (2016). Actor engagement as a microfoundation for value co-creation. Journal of Business Research, 69(8), 3008-3017.CrossRefGoogle Scholar
  38. Talja, S. (2002). Information sharing in academic communities: types and levels of collaboration in information seeking and use. New Review of Information Behavior Research, 3, 143–159.Google Scholar
  39. Vargo, S. L., & Lusch, R. F. (2017). Service-dominant logic 2025. International Journal of Research in Marketing, 34(1), 46–67.  https://doi.org/10.1016/j.ijresmar.2016.11.001CrossRefGoogle Scholar
  40. Vargo, S. L., & Lusch, R. F. (2016). Institutions and axioms: an extension and update of service-dominant logic. Journal of the Academy of Marketing Science, 44(1), 5–23.CrossRefGoogle Scholar
  41. Viol, J., Bernsmann, R., Riemer, K. (2015). Behavioural dimensions for discovering knowledge actor roles utilizing enterprise social network metrics. In Proceedings of the 26th Australasian Conference on Information Systems, Adelaide, Australia. ISBN# 978-0-646-95337-3Google Scholar
  42. Welser, H.T., Smith, M., Fisher, D., & Gleave, E. (2015). Distilling digital traces: computational social science approaches to studying the internet. In The SAGE Handbook of Online Research Methods, pp. 116–140.Google Scholar
  43. Witell, L., Snyder, H., Gustafsson, A., Fombelle, P., & Kristensson, P. (2015). Defining service innovation: A review and synthesis. Journal of Business Research, 69(8), 2863–2872.CrossRefGoogle Scholar
  44. Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N. & Malone, T.W. (2010). Evidence for a collective intelligence factor in the performance of human groups. Science, 330(6004), 686-688.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cheryl A. Kieliszewski
    • 1
    Email author
  • Laura Challman Anderson
    • 1
  1. 1.IBM Research—AlmadenSan JoseUSA

Personalised recommendations