Skip to main content

Microchemical Analysis in the SEM

  • Chapter
  • First Online:
A Beginners' Guide to Scanning Electron Microscopy
  • 9418 Accesses

Abstract

In most cases, it is desirable to obtain chemical information from specimens that are examined in the SEM. This is usually accomplished using energy dispersive x-ray spectrometry (EDS) or wavelength dispersive x-ray spectroscopy (WDS) technique. The microchemical analysis is accomplished by EDS detector or WDS spectrometer fitted in the column of the SEM. Integration of this detector or spectrometer with the SEM enables a user to determine the localized chemistry of a region. For example, the microchemical make-up of features that are only a few microns in size can be determined with a high degree of sensitivity. Not only the elements that make up a phase are detected (qualitative analysis) but also their concentrations are determined (quantitative analysis). The microchemical analysis is efficient and nondestructive and thus plays an important role in materials verification and phase identification. The EDS detector and WDS spectrometer are incorporated into the SEM in a way that does not disturb or affect the imaging capability of the instrument. The EDS and WDS identify the quantum characteristic x-ray energy and wavelength, respectively for elemental analysis. Their mode of operation is controlled by computers. This chapter describes the techniques used to undertake microchemical analysis in the SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 09 August 2023

    A correction has been published.

References

  1. Fitzgerald R, Keil K, Heinrich KFJ (1968) Solid-state energy-dispersion spectrometer for electron-microprobe x-ray analysis. Science 159:528–530

    Article  CAS  Google Scholar 

  2. Torma P, Sipila H (2013) Ultra-thin silicon nitride X-ray windows. IEEE Trans Nucl Sci 60:1311–1314

    Article  CAS  Google Scholar 

  3. Torma PT, Kostamo J, Sipila H, Mattila M, Kostamo P, Kostamo E, Lipsanen H, Laubis C, Scholze F, Nelms N, Shortt B, Bavdaz M (2014) Performance and Properties of Ultra-Thin Silicon Nitride X-ray Windows. IEEE Trans Nucl Sci 61:695–699

    Article  CAS  Google Scholar 

  4. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  5. Huebner S, Miyakawa N, Kapser S, Pahlke A, Kreupl F (2015) High performance X-ray transmission windows based on graphenic carbon. IEEE Trans Nucl Sci 62(2):588–593

    Article  CAS  Google Scholar 

  6. Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science, 2nd edn. Springer, New York, USA

    Book  Google Scholar 

  7. Williams DB, Goldstein JI, Newbury DE (1995) X-Ray spectrometry in electron beam instruments, 1st edn. Springer, New York, USA

    Book  Google Scholar 

  8. Goldstein JI, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Swayer L, Michael J (2007) Scanning electron microscopy and X-Ray microanalysis, 3rd edition (Corrected edition), Springer, New York, USA

    Google Scholar 

  9. Reed SJB (1993) Electron microprobe analysis and scanning electron microscopy in geology, 2nd edn. Cambridge University Press, Cambrdige, UK

    Google Scholar 

  10. Zhou W, Wang ZL (2006) Scanning microscopy for nanotechnology. Springer, New York, USA

    Google Scholar 

  11. Hawkes PW, Spence JCH (2008) Science of microscopy, vol 1. (corrected printing. Springer, New York. USA

    Google Scholar 

  12. Castaing R (1951) Application of electron probes to local chemical and crystallographic analysis, Ph.D. Thesis, University of Paris, Paris. France. English (trans: Duwez P and Wittry DB) California Institute of technology, 1955

    Google Scholar 

  13. Duncumb P, Reed SJB (1968) Progress in the calculation of stopping power and backscatter effects. In: Heinrich KFJ (ed) Quantitative electron probe microanalysis. National Bureau of Standards Special Publication 298, US Government printing office, Washington D.C., p 133

    Google Scholar 

  14. Bastin GF, Heijligers HJM, Van Loo FJJ (1986) A further improve- ment in the Gaussian $(pz) approach for matrix correction in quantitative electron probe microanalysis. Scanning 8:45–67

    Article  CAS  Google Scholar 

  15. Philibert J (1963) In: Pattee HH, Cosslett VE, Engstrom A (eds) Proceedings of the 34th international symposium on X-ray optics and X-ray microanalysis. Academic Press, New York, p 379

    Google Scholar 

  16. Duncumb P, Shields PK (1966) Effect of critical excitation potential on the absorption correction. In: McKinley TD, Henrich KFJ, Wittry DB (eds) The electron microprobe. John Wiley & Sons, New York, p 284

    Google Scholar 

  17. Reed SJB (1965) Characteristic fluorescence corrections in electron-probe microanalysis. Br J Appl Phys 16(7):913

    Article  CAS  Google Scholar 

  18. Toya T, Kato A, Jotaki R (1984) Quantitative analysis with electron probe microanalyzer. JEOL Training Center, JEOL Ltd., Tokyo, p 83

    Google Scholar 

  19. Tanaka K (2006) A microcalorimeter EDS system suitable for low acceleration voltage analysis. Surf Interface Anal 38:1646–1649. https://doi.org/10.1002/sia.2408

    Article  CAS  Google Scholar 

  20. Kenik EA, Demers H (2006) Spectrum imaging with a microcalorimeter EDS detector on a FEG-SEM Cr Mn 1 μm. Met Mater 12(Supp 2):140–141. https://doi.org/10.1017/S143192760606658X

    Article  Google Scholar 

  21. Cantor R, Croce MP, Havrilla GJ, Carpenter M, McIntosh K, Hall A, Ullom JN (2016) Oxidation state determination from chemical shift measurements using a cryogen-free microcalorimeter X-ray spectrometer on an SEM. Microsc Microanal 22(S3):434–435. https://doi.org/10.1017/S1431927616003020

    Article  Google Scholar 

  22. Rickerby DG (1999) Application of low voltage scanning electron microscopy and energy dispersive X-Ray spectroscopy. In: Chapter from book impact of electron and scanning probe microscopy on materials research. Springer, New York, pp 367–385

    Chapter  Google Scholar 

  23. Redfern D, Nicolosi J, Weiland R (2002) The microcalorimeter for industrial applications. J Res Natl Inst Stand Technol 107(6):621–626

    Article  CAS  Google Scholar 

  24. Goodhew PJ, Humphreys J, Beanland R (2001) Electron microscopy and analysis. Taylor and Francis, London

    Google Scholar 

  25. Marco S, Ivan B (2006) An introduction to energy-dispersive and wavelength-dispersive X-ray microanalysis. Microsc Anal 20(2):S5–S8 (UK)

    Google Scholar 

  26. René EVG, Andrzej AM (2002) Handbook of X-ray spectrometry, 2nd edn, Revised and expanded. Marcel Dekker, Inc., New York, ISBN: 0-8247-0600-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ul-Hamid, A. (2018). Microchemical Analysis in the SEM. In: A Beginners' Guide to Scanning Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-98482-7_7

Download citation

Publish with us

Policies and ethics