Skip to main content

Effects of Low Energy Availability on Bone Health in Exercising Premenopausal Women

  • Chapter
  • First Online:
Nutritional Influences on Bone Health

Abstract

The development of optimal peak bone mass during the adolescent years and the associated rate of decline in bone mass with aging are the key determinants of bone health. Because both are influenced by lifestyle behaviors such as exercise and dietary intake, an understanding of the effects of low energy availability and exercise on bone health in premenopausal women is paramount. Although exercise is osteogenic, in the context of low energy availability due to inadequate dietary intake, mechanotransduction and bone metabolism are compromised. If prolonged, both low energy availability and associated hypoestrogenism can cause bone loss, increasing the risk of osteoporotic fracture and bone stress injury. The female athlete triad is the clinical and physiological context in which bone loss in exercising women occurs. Three decades of research have defined the causal relations between low energy availability, hypoestrogenism, and bone loss. Whether complete reversal of bone loss with improved energy availability and menstrual resumption is possible or unclear, recent studies are addressing this. Evidence-based recommendations for clinicians have recently been developed and include a user-friendly algorithm to predict the risk of bone loss and bone stress injury. Future research that capitalizes on improved imaging and quantitative approaches to determine bone strength and design effective dietary interventions to prevent and treat bone loss in exercising women are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6.

    Article  PubMed  Google Scholar 

  2. van den Bergh JP, van Geel TA, Geusens PP. Osteoporosis, frailty and fracture: implications for case finding and therapy. Nat Rev Rheumatol. 2012;8(3):163–72.

    Article  PubMed  Google Scholar 

  3. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bailey CA, Brooke-Wavell K. Exercise for optimising peak bone mass in women. Proc Nutr Soc. 2008;67(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  6. Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in premenopausal women: a meta-analysis of randomized controlled trials. Int J Endocrinol. 2013;2013:741639.

    PubMed  PubMed Central  Google Scholar 

  7. Bonnet N, Ferrari SL. Exercise and the skeleton: how it works and what it really does. IBMS BoneKEy. 2010;7(7):235–48.

    Article  Google Scholar 

  8. Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Manttari A, et al. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone. 1995;17(3):197–203.

    Article  CAS  PubMed  Google Scholar 

  9. Lanyon LE. The success and failure of the adaptive response to functional load-bearing in averting bone fracture. Bone. 1992;13(Suppl 2):S17–21.

    Article  PubMed  Google Scholar 

  10. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports M. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36(11):1985–96.

    Article  PubMed  Google Scholar 

  11. Robling AG. Is bone’s response to mechanical signals dominated by muscle forces? Med Sci Sports Exerc. 2009;41(11):2044–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nindl BC, Hymer WC, Deaver DR, Kraemer WJ. Growth hormone pulsatility profile characteristics following acute heavy resistance exercise. J Appl Physiol (1985). 2001;91(1):163–72.

    Article  CAS  Google Scholar 

  13. Wideman L, Weltman JY, Hartman ML, Veldhuis JD, Weltman A. Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings. Sports Med. 2002;32(15):987–1004.

    Article  PubMed  Google Scholar 

  14. Jurkowski JE, Jones NL, Walker C, Younglai EV, Sutton JR. Ovarian hormonal responses to exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978;44(1):109–14.

    CAS  PubMed  Google Scholar 

  15. Leidy HJ, Dougherty KA, Frye BR, Duke KM, Williams NI. Twenty-four-hour ghrelin is elevated after calorie restriction and exercise training in non-obese women. Obesity (Silver Spring). 2007;15(2):446–55.

    Article  CAS  Google Scholar 

  16. Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, et al. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem. 2007;282(28):20715–27.

    Article  CAS  PubMed  Google Scholar 

  17. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    Article  PubMed  Google Scholar 

  18. Drinkwater BL, Nilson K, Chesnut CH 3rd, Bremner WJ, Shainholtz S, Southworth MB. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984;311(5):277–81.

    Article  CAS  PubMed  Google Scholar 

  19. Drinkwater BL, Bruemmer B, Chesnut C 3rd, Chait A. Menstrual history as a determinant of current bone density in young athletes. J Clin Endocrinol Metab. 1993;77(6):1605–9.

    PubMed  Google Scholar 

  20. Drinkwater BL, Nilson K, Ott S, Chesnut CH 3rd. Bone mineral content of amenorrheic and eumenorrheic athletes. JAMA. 1986;256(3):380–2.

    Article  CAS  PubMed  Google Scholar 

  21. Drinkwater BL, Nilson K, Ott S, Chesnut CH 3rd. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA. 1986;256(3):380–2.

    Article  CAS  PubMed  Google Scholar 

  22. Bullen BA, Skrinar GS, Beitins IZ, von Mering G, Turnbull BA, McArthur JW. Induction of menstrual disorders by strenuous exercise in untrained women. N Engl J Med. 1985;312(21):1349–53.

    Article  CAS  PubMed  Google Scholar 

  23. Brooks-Gunn J, Warren MP, Hamilton LH. The relation of eating problems and amenorrhea in ballet dancers. Med Sci Sports Exerc. 1987;19(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  24. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  25. Otis CL, Drinkwater B, Johnson M, Loucks A, Wilmore J. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 1997;29(5):i–ix.

    Article  CAS  PubMed  Google Scholar 

  26. De Souza MJ, Lee DK, VanHeest JL, Scheid JL, West SL, Williams NI. Severity of energy-related menstrual disturbances increases in proportion to indices of energy conservation in exercising women. Fertil Steril. 2007;88(4):971–5.

    Article  PubMed  Google Scholar 

  27. Williams NI, Caston-Balderrama AL, Helmreich DL, Parfitt DB, Nosbisch C, Cameron JL. Longitudinal changes in reproductive hormones and menstrual cyclicity in cynomolgus monkeys during strenuous exercise training: abrupt transition to exercise-induced amenorrhea. Endocrinology. 2001;142(6):2381–9.

    Article  CAS  PubMed  Google Scholar 

  28. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.

    Article  CAS  PubMed  Google Scholar 

  29. De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43(1):140–8.

    Article  PubMed  Google Scholar 

  30. De Souza MJ, Williams NI. Beyond hypoestrogenism in amenorrheic athletes: energy deficiency as a contributing factor for bone loss. Curr Sports Med Rep. 2005;4(1):38–44.

    Article  PubMed  Google Scholar 

  31. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.

    Article  PubMed  Google Scholar 

  32. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the female athlete triad – Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7.

    Article  PubMed  Google Scholar 

  33. Hoch AZ, Jurva JW, Staton MA, Thielke R, Hoffmann RG, Pajewski N, et al. Athletic amenorrhea and endothelial dysfunction. WMJ. 2007;106(6):301–6.

    PubMed  Google Scholar 

  34. Friday KE, Drinkwater BL, Bruemmer B, Chesnut C 3rd, Chait A. Elevated plasma low-density lipoprotein and high-density lipoprotein cholesterol levels in amenorrheic athletes: effects of endogenous hormone status and nutrient intake. J Clin Endocrinol Metab. 1993;77(6):1605–9.

    CAS  PubMed  Google Scholar 

  35. O’Donnell E, De Souza MJ. The cardiovascular effects of chronic hypoestrogenism in amenorrhoeic athletes – a critical review. Sports Med. 2004;34(9):601–27.

    Article  PubMed  Google Scholar 

  36. Vanheest JL, Rodgers CD, Mahoney CE, De Souza MJ. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exerc. 2014;46(1):156–66.

    Article  PubMed  Google Scholar 

  37. Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45(5):985–96.

    Article  PubMed  Google Scholar 

  38. Sundgot-Borgen J, Torstveit MK. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin J Sport Med. 2004;14(1):25–32.

    Article  PubMed  Google Scholar 

  39. Nichols JF, Rauh MJ, Lawson MJ, Ji M, Barkai HS. Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med. 2006;160(2):137–42.

    Article  PubMed  Google Scholar 

  40. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, et al. 2014 Female Athlete Triad Coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, CA, May 2012, and 2nd International Conference held in Indianapolis, IN, May 2013. Clin J Sport Med. 2014;24(2):96–119.

    PubMed  Google Scholar 

  41. De Souza MJ, Williams NI, Nattiv A, Joy E, Misra M, Loucks AB, et al. Misunderstanding the female athlete triad: refuting the IOC consensus statement on Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(20):1461–5.

    Article  PubMed  Google Scholar 

  42. Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.

    Article  PubMed  Google Scholar 

  43. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    Article  PubMed  Google Scholar 

  44. Wade GN, Schneider JE, Li HY. Control of fertility by metabolic cues. Am J Physiol. 1996;270(1 Pt 1):E1–19.

    CAS  PubMed  Google Scholar 

  45. Reed JL, De Souza MJ, Kindler JM, Williams NI. Nutritional practices associated with low energy availability in division I female soccer players. J Sports Sci. 2014;32(16):1499–509.

    Article  PubMed  Google Scholar 

  46. Gibbs JC, Williams NI, Mallinson RJ, Reed JL, Rickard AD, De Souza MJ. Effect of high dietary restraint on energy availability and menstrual status. Med Sci Sports Exerc. 2013;45(9):1790–7.

    Article  CAS  PubMed  Google Scholar 

  47. Sundgot-Borgen J. Eating disorders among male and female elite athletes. Br J Sports Med. 1999;33(6):434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Loucks AB, Laughlin GA, Mortola JF, Girton L, Nelson JC, Yen SS. Hypothalamic-pituitary-thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab. 1992;75(2):514–8.

    CAS  PubMed  Google Scholar 

  49. Williams NI, Leidy HJ, Hill BR, Lieberman JL, Legro RS, De Souza MJ. Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. Am J Physiol Endocrinol Metab. 2015;308(1):E29–39.

    Article  CAS  PubMed  Google Scholar 

  50. Loucks AB, Mortola JF, Girton L, Yen SS. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab. 1989;68(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  51. Williams NI, Helmreich DL, Parfitt DB, Caston-Balderrama A, Cameron JL. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab. 2001;86(11):5184–93.

    Article  CAS  PubMed  Google Scholar 

  52. Williams NI, Reed JL, Leidy HJ, Legro RS, De Souza MJ. Estrogen and progesterone exposure is reduced in response to energy deficiency in women aged 25–40 years. Hum Reprod. 2010;25(9):2328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loucks AB, Callister R. Induction and prevention of low-T3 syndrome in exercising women. Am J Physiol. 1993;264(5 Pt 2):R924–30.

    CAS  PubMed  Google Scholar 

  54. Loucks AB, Heath EM. Dietary restriction reduces luteinizing hormone (LH) pulse frequency during waking hours and increases LH pulse amplitude during sleep in young menstruating women. J Clin Endocrinol Metab. 1994;78(4):910–5.

    CAS  PubMed  Google Scholar 

  55. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol. 1994;266(3 Pt 2):R817–23.

    CAS  PubMed  Google Scholar 

  56. Loucks AB, Verdun M. Slow restoration of LH pulsatility by refeeding in energetically disrupted women. Am J Physiol. 1998;275(4 Pt 2):R1218–26.

    CAS  PubMed  Google Scholar 

  57. Loucks AB. The response of luteinizing hormone pulsatility to 5 days of low energy availability disappears by 14 years of gynecological age. J Clin Endocrinol Metab. 2006;91(8):3158–64.

    Article  CAS  PubMed  Google Scholar 

  58. Zanker CL, Swaine IL. Responses of bone turnover markers to repeated endurance running in humans under conditions of energy balance or energy restriction. Eur J Appl Physiol. 2000;83(4–5):434–40.

    Article  CAS  PubMed  Google Scholar 

  59. Talbott SM, Shapses SA. Fasting and energy intake influence bone turnover in lightweight male rowers. Int J Sport Nutr. 1998;8(4):377–87.

    Article  CAS  PubMed  Google Scholar 

  60. Talbott SM, Rothkopf MM, Shapses SA. Dietary restriction of energy and calcium alters bone turnover and density in younger and older female rats. J Nutr. 1998;128(3):640–5.

    Article  CAS  PubMed  Google Scholar 

  61. de Bakker CMJ, Tseng WJ, Li Y, Zhao H, Liu XS. Clinical evaluation of bone strength and fracture risk. Curr Osteoporos Rep. 2017;15(1):32–42.

    Article  PubMed  Google Scholar 

  62. Miller KK, Grinspoon SK, Ciampa J, Hier J, Herzog D, Klibanski A. Medical findings in outpatients with anorexia nervosa. Arch Intern Med. 2005;165(5):561–6.

    Article  PubMed  Google Scholar 

  63. Christo K, Prabhakaran R, Lamparello B, Cord J, Miller KK, Goldstein MA, et al. Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics. 2008;121(6):1127–36.

    Article  PubMed  Google Scholar 

  64. Grinspoon S, Thomas E, Pitts S, Gross E, Mickley D, Miller K, et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med. 2000;133(10):790–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mitchell DM, Tuck P, Ackerman KE, Cano Sokoloff N, Woolley R, Slattery M, et al. Altered trabecular bone morphology in adolescent and young adult athletes with menstrual dysfunction. Bone. 2015;81:24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96(10):3123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Faje AT, Karim L, Taylor A, Lee H, Miller KK, Mendes N, et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J Clin Endocrinol Metab. 2013;98(5):1923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singhal V, Tulsiani S, Campoverde KJ, Mitchell DM, Slattery M, Schorr M, et al. Impaired bone strength estimates at the distal tibia and its determinants in adolescents with anorexia nervosa. Bone. 2018;106:61–8.

    Article  PubMed  Google Scholar 

  69. Solmi M, Veronese N, Correll CU, Favaro A, Santonastaso P, Caregaro L, et al. Bone mineral density, osteoporosis, and fractures among people with eating disorders: a systematic review and meta-analysis. Acta Psychiatr Scand. 2016;133(5):341–51.

    Article  CAS  PubMed  Google Scholar 

  70. Southmayd EA, Mallinson RJ, Williams NI, Mallinson DJ, De Souza MJ. Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women. Osteoporos Int. 2017;28(4):1365–76.

    Article  CAS  PubMed  Google Scholar 

  71. De Souza MJ, Williams NI. Physiological aspects and clinical sequelae of energy deficiency and hypoestrogenism in exercising women. Hum Reprod Update. 2004;10(5):433–48.

    Article  PubMed  Google Scholar 

  72. Lawson EA, Donoho D, Miller KK, Misra M, Meenaghan E, Lydecker J, et al. Hypercortisolemia is associated with severity of bone loss and depression in hypothalamic amenorrhea and anorexia nervosa. J Clin Endocrinol Metab. 2009;94(12):4710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Misra M, Miller KK, Cord J, Prabhakaran R, Herzog DB, Goldstein M, et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metabol. 2007;92(6):2046–52.

    Article  CAS  Google Scholar 

  74. Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism. Metabolism. 2015;64(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  75. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int. 1997;7(4):311–5.

    Article  CAS  PubMed  Google Scholar 

  76. Mallinson RJ, Williams NI, Gibbs JC, Koehler K, Allaway HCM, Southmayd E, et al. Current and past menstrual status is an important determinant of femoral neck geometry in exercising women. Bone. 2016;88:101–12.

    Article  PubMed  Google Scholar 

  77. Miller KK, Lee EE, Lawson EA, Misra M, Minihan J, Grinspoon SK, et al. Determinants of skeletal loss and recovery in anorexia nervosa. J Clin Endocrinol Metab. 2006;91(8):2931–7.

    Article  CAS  PubMed  Google Scholar 

  78. Arends JC, Cheung MY, Barrack MT, Nattiv A. Restoration of menses with nonpharmacologic therapy in college athletes with menstrual disturbances: a 5-year retrospective study. Int J Sport Nutr Exerc Metab. 2012;22(2):98–108.

    Article  CAS  PubMed  Google Scholar 

  79. Dueck CA, Manore MM, Matt KS. Role of energy balance in athletic menstrual dysfunction. Int J Sport Nutr. 1996;6(2):165–90.

    Article  CAS  PubMed  Google Scholar 

  80. Kopp-Woodroffe SA, Manore MM, Dueck CA, Skinner JS, Matt KS. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr. 1999;9(1):70–88.

    Article  CAS  PubMed  Google Scholar 

  81. Lagowska K, Kapczuk K, Jeszka J. Nine-month nutritional intervention improves restoration of menses in young female athletes and ballet dancers. J Int Soc Sports Nutr. 2014;11(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fredericson M, Kent K. Normalization of bone density in a previously amenorrheic runner with osteoporosis. Med Sci Sports Exerc. 2005;37(9):1481–6.

    Article  PubMed  Google Scholar 

  83. Misra M, Prabhakaran R, Miller KK, Goldstein MA, Mickley D, Clauss L, et al. Weight gain and restoration of menses as predictors of bone mineral density change in adolescent girls with anorexia nervosa-1. J Clin Endocrinol Metab. 2008;93(4):1231–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy I. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, N.I., De Souza, M.J. (2019). Effects of Low Energy Availability on Bone Health in Exercising Premenopausal Women. In: Weaver, C., Bischoff-Ferrari, H., Daly, R., Wong, MS. (eds) Nutritional Influences on Bone Health. Springer, Cham. https://doi.org/10.1007/978-3-319-98464-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98464-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98463-6

  • Online ISBN: 978-3-319-98464-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics