Skip to main content

Biomass Resources for Biofuel Production

  • Chapter
  • First Online:
Modeling Energetic Efficiency of Biofuels Production

Part of the book series: Green Energy and Technology ((GREEN))

  • 332 Accesses

Abstract

Biomass can be considered as any form of matter that is formed by living organisms. When already not alive, biomass is the resource for many useful applications. In the majority of cases, it is converted into various products or used as an energy source. The present chapter is dedicated to the discussion of the latter case including the methods of conversion of biomass into several types of fuels. The silviculture, short rotation crops, and agricultural crops are presented as sources of different forms of biomass utilized for production of several types of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brostow, W., Datashvili, T., Miller, H.: Wood and wood derived materials. J. Mater. Educ. 32(3–4), 125–138 (2010)

    Google Scholar 

  2. Belbo, H.: Technical specifications for solid biofuels. Evaluation of the new technical specifications provided by CEN/TS 335 in the Swedish Biofuel Market. SLU Master Thesis Nr 012 2006, ISSN 1651-761x

    Google Scholar 

  3. Krajnc, N.: Wood fuel handbook. Food and Agriculture Organization of United Nations, Pristina (2015)

    Google Scholar 

  4. Pong, W.Y., Waddell D.R., Lambert M.B.: Wood density-moisture profiles in old-growth Douglas-Fir and Western Hemlock, Res. Pap. PNW-347. US Department of Agriculture, Forest Service, Pacific Northwest Research Station Portland, OR (1986). 30 p

    Google Scholar 

  5. Terragni, O.: 80% of earth’s forests have been destroyed; http://greenactionnews.net/blog/2014/10/05/80-of-earths-forests-have-been-destroyed-who-is-clear-cutting-the-most/. Visited 21.02.2018

  6. Kellogg, L.D., Bettinger, P., Studier, D.D.: Terminology of ground-based mechanized logging in the Pacific Northwest. College of Forestry, Forest Research Laboratory, Oregon State University, Corvallis, OR (1993)

    Google Scholar 

  7. Okanda Oyier, P.: Fuel consumption of timber harvesting systems in New Zealand, A thesis submitted in partial fulfilment of the requirements for the degree of Master of Forestry Science at the School of Forestry University of Canterbury (2015 November)

    Google Scholar 

  8. Smidt, M., Gallagher, T.: Factors affecting fuel consumption and harvesting costs. Paper presented at the Council on Forest Engineering, Missoula, Montana (2013)

    Google Scholar 

  9. Lijewski, P., Merkisz, J., Fuć, P., ZióƂkowski, A., Rymaniak, L., Kusiak, W.: Fuel consumption and exhaust emissions in the process of mechanized timber extraction and transport. Eur. J. Forest Res. 136, 153–160 (2017)

    Article  Google Scholar 

  10. Czemko, B.: Ile naprawdę mamy drewna w lesie? Rynek Drzewny 2/2007 How much wood we really have in the forest? Wood Market 2/2007

    Google Scholar 

  11. Matthews, R.W., Jenkins, T.A.R., Mackie, E.D., Dick, E.C.: Forest yield: a handbook on forest growth and yield tables for British forestry. Forestry Commission, Edinburgh (2016)

    Google Scholar 

  12. Christersson, L., Verma, K.: Short-rotation forestry—a complement to “conventional” forestry. Unasylva 223(57), 34–39 (2006)

    Google Scholar 

  13. Eppler, U., Petersen, J.-E., Couturier, Ch.: Short rotation forestry, Short Rotation Coppice and perennial grasses in the European Union: agro-environmental aspects, present use and perspectives. In: Dallemand, J.F., Petersen, J.E., Karp A. (eds.) Short Rotation Forestry, Short Rotation Coppice and perennial grasses in Proceedings of the Expert Consultation: the European Union: Agro-environmental aspects, present use and perspectives. European Commission Joint Research Centre Institute for Energy JRC 47547 EUR 23569 EN ISSN 1018-5593, Harpenden, United Kingdom (2007 October 17 and 18)

    Google Scholar 

  14. Hinchee, M., Rottmann, W., Mullinax, L., Zhang, Ch., Chang, Sh., Cunningham, M., Pearson, L., Nehra N.: Short-rotation woody crops for bioenergy and biofuels applications. In: Tomes, D., Lakshmanan, P., Songstad D. (eds.) Biofuels, Global Impact on Renewable Energy, Production Agriculture, and Technological Advancements. Springer, New York, NY. ISBN 978-1-4419-7144-9

    Google Scholar 

  15. Pope, P.E., Dawson J. O.: Central Hardwood Notes Short-Rotation Plantations. In: Van Sambeek, J.W., Dawson, J.O., Ponder, F., Jr., Loewenstein, E.F., Fralish, J.S. (eds.) Proceedings, 13th Central Hardwood Forest conference; 2002 April 1–3; Urbana, IL. Gen. Tech. Rep. NC-234. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Research Station

    Google Scholar 

  16. Tubby, I., Armstrong A.: Management of short rotation coppice. Forestry Commission 231 Corstirphine Road, Edinburgh. ISBN 0-85538-567-7

    Google Scholar 

  17. Guidi, W., Pitre, F.E., Labrecque, M.: Short-rotation coppice of willows for the production of biomass in Eastern Canada. In: Matovic M.D. (ed.) Biomass Now. Sustainable Growth and Use. IntechOpen (2013)

    Google Scholar 

  18. RĂ©dei, K., Csiha I., Keser Z.: Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site condition. Acta. Silv. Lign. Hung. 7, 125–132 (2011)

    Google Scholar 

  19. Benoüt, G., Maupu, P., Vial, E.: Life cycle assessment of eucalyptus short rotation coppices for bioenergy production in southern France. GCB Bioenergy 5, 30–42 (2013). https://doi.org/10.1111/gcbb.12008

    Article  Google Scholar 

  20. Dimitriou, I., Rutz, D.: Sustainable short rotation coppice. In: A Handbook. WIP Renewable Energies, Munich, Germany (2015)

    Google Scholar 

  21. Bacenetti, J., Fiala, M.: Short rotation coppice in Italy: a model to asses economic, energetic and environmental performances of different crop systems. World Renewable Energy Congress 2011—Sweden, Linkoping, Sweden (2011 May 8–13)

    Google Scholar 

  22. Gallagher, C., Murphy, J.D.: Is it better to produce biomethane via thermochemical or biological routes? An energy balance perspective. Biofuels, Bioprod. Bioref. 7, 273–281 (2013)

    Article  Google Scholar 

  23. Stolarski, M.J., KrzyĆŒaniak, M., Szczukowski, S., Tworkowski, J.: Efektywnoƛć energetyczna produkcji biomasy wierzby w jednorocznym i trzyletnim cyklu zbioru, (Energetic effectiveness of willow biomass production in annual and triennial harvest cycle). Fragm. Agron. 31(2), 88–95 (2014)

    Google Scholar 

  24. WĂłjcicki Z.: Metodyka badania energochƂonnoƛci produkcji rolniczej. (Methodology of investigation of Energy consumption in agricultural production.) Problemy inĆŒynierii rolniczej Problems of Agricultural Engineering. 4(90) 17–29 (2015)

    Google Scholar 

  25. Pimentel, D.: Energy flows in agricultural and natural ecosystems. Options Mediterraneennes, pp. 125–136. Inst. Agron. Mediterraneo de Zaragoza, Zaragoza, Spain (1984)

    Google Scholar 

  26. Orynycz O., Chodorski A., Wasiak A.: Energetic efficiency of salix viminalis plantation. In: IX International Scientific Symposium “Farm Machinery and Processes Management in Sustainable Agriculture”, Lublin, Poland (2017)

    Google Scholar 

  27. Johnston, M., Foley, J. A., Holloway, T., Kucharik, C., Monfreda, C.: Resetting global expectations from agricultural biofuels Environ. Res. Lett. 4 (2009) 014004 (9 pp.) https://doi.org/10.1088/1748-9326/4/1/014004

    Article  Google Scholar 

  28. Johnston, M., Licker, R., Foley, J., Holloway, T., Mueller, N.D., Barford, C., Kucharik, C.: Closing the gap: global potential for increasing biofuel production through agricultural intensification. Environ. Res. Lett. 6, 034028 (2011) (11 pp)

    Article  Google Scholar 

  29. DeLucia, E.H., Gomez-Casanovas, N., Greenberg, J.A., Hudiburg, T.W., Kantola, I.B., Long, S.P., Miller, A.D., Ort, D.R., Parton, W.J.: The theoretical limit to plant productivity. Environ. Sci. Technol. 48(16), 9471–9477 (2014). https://doi.org/10.1021/es502348e

    Article  Google Scholar 

  30. Salla, D.A., Furlaneto, F.P.B., Cabello, C., Kanthack, R.A.D.: AnĂĄlise energĂ©tica de sistemas de produção de etanol de mandioca, (Energetic analysis of the ethanol production systems of cassava) (Manihot esculenta Crantz). Revista Brasileira de Engenharia AgrĂ­cola e Ambiental v.14, n.4, p. 444–448, 201

    Google Scholar 

  31. Alluvione, F., Moretti, B., Sacco, D., Grignani, C.: EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy 36, 4468–4481 (2011)

    Article  Google Scholar 

  32. Orynycz, O., Wasiak, A.: Effects of tillage technology on energetic efficiency of rapeseed plantation for biofuel production. Appl. Comput. Sci. 10(2), 67–76 (2014)

    Google Scholar 

  33. GoƂaszewski, J., de Visser, Ch. (eds.): State of Art. On Energy Efficiency in Agriculture. Country data on energy consumption in different agroproduction sectors in the European countries. The project Agriculture and Energy Efficiency © 2012 agrEE, founded by the FP7 Program of the EU with the Grant Agreement Number 289139. Project Deliverable 2.1

    Google Scholar 

  34. Biswas, B., Scott, P.T., Gresshoff, P.M.: Tree legumes as feedstock for sustainable biofuel production: opportunities and challenges. J. Plant Physiol. 168, 1877–1884 (2011)

    Article  Google Scholar 

  35. Coyle, W.: The future of biofuels a global perspective, wcoyle@ers.usda.gov. Retrieved 12. 05.2018

    Google Scholar 

  36. Rosegrant, M.W., Msangi, S., Sulser, T., Valmonte-Santos, R.: Bioenergy and agriculture: Promises and challenges biofuels and the global food balance. Int. Food Policy Res. Inst.; Focus 14 ‱ Brief 3 Of 12 ‱ December 2006

    Google Scholar 

  37. Hill, J., Nelson, E., Tilman, D., Polasky, S., Tiffany, D.: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S.A. 103, 11206–11210 (2006)

    Article  Google Scholar 

  38. de Fraiture, Ch., Giordano, M., Liao, Y.: Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10(Supplement 1), 67–81 (2008)

    Article  Google Scholar 

  39. https://www.eia.gov/conference/2014/pdf/presentations/calabotta.pdf. Retrieved 12. 05. 2018

  40. Naylor, R.L.: Oil crops, aquaculture, and the rising role of demand: a fresh perspective on food security. Global Food Secur. 11, 17–25 (2016)

    Article  Google Scholar 

  41. Lassing, M., MĂ„rtensson, P., Olsson, E., Svensson, M., Hulteberg, Ch., Karlsson, H.T., Lund University, BĂžrresen B.T.,: StatoilHydro ASA, Eklund H., StatoilHydro ASA, KET050 Biodiesel Production from Microalgae Dept of Chemical Engineering, Lund University, Faculty of Engineering; Final Report on Biodiesel Production from Microalgae—A Feasibility Study—Presented to StatoilHydro ASA Oslo, Norway May 16, 2008

    Google Scholar 

  42. Song, M., Pei, H., Hua, W., Ma, G.: Evaluation of the potential of 10 microalgal strains for biodiesel production. Biores. Technol. 141, 245–251 (2013)

    Article  Google Scholar 

  43. Deconinck, N., Muylaert, K., Ivens, W., Vandamme, D.: Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. Algal Res. 31, 469–477 (2018)

    Article  Google Scholar 

  44. Costa, A.V., Greque de Morais, M.: The role of biochemical engineering in the production of biofuels from microalgae;m. Biores. Technol. 102, 2–9 (2011)

    Article  Google Scholar 

  45. Wesoff, E.: Hard lessons from the great Algae biofuel bubble; https://greentechmedia.com/authors/eric-wesoff. April 19, 2017. Retrieved 28.05.2018

  46. van Iersel, S., Flammini A.: Algae-based biofuels: applications and co-products FAO Environmental and Natural Resources Service Series, No. 44. FAO, Rome (2010)

    Google Scholar 

  47. Ramesh, D., Karthikeyan, S., Chinnanchetty, G.: Exploring the possibility of biofuel production from by-products ans wastes generated from date industry. In: Manickavasagan, A., Mohammed, M., Sukumar E.E. (eds.) Dates: Production, Processing, Food and Medicinal Values; CRC Press

    Google Scholar 

  48. Shi, W., Li, J., He, B., Yan, F., Cui, Z., Wu, K., Lin, L., Qian, X., Cheng, Y.: Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Bioresour. Technol. 139, 316–322 (2013). https://doi.org/10.1016/j.biortech.2013.04.040. Epub 2013 Apr 19

    Article  Google Scholar 

  49. Van Gerpen, J.: Animal fats for biodiesel production; farm energy January 31, 2014; http://articles.extension.org/pages/30256/animal-fats-for-biodiesel-production

  50. Carmona-Cabello, M., Leiva-Candia, D., Castro-Cantarero, J.L., Pinzi, S., Dorado, M.P.: Valorization of food waste from restaurants by transesterification of the lipid fraction. Fuel 215, 492–498 (2018)

    Article  Google Scholar 

  51. Lausselet, C., Cherubini, F., del Alamo Serrano, G., Becidan, M., Strþmman, A.H.: Life-cycle assessment of a waste-to-energy plant in central Norway: current situation and effects of changes in waste fraction composition. Waste Manag. 58, 191–201 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Wasiak .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wasiak, A. (2019). Biomass Resources for Biofuel Production. In: Modeling Energetic Efficiency of Biofuels Production. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-98431-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98431-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98430-8

  • Online ISBN: 978-3-319-98431-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics