Advertisement

Therapeutic Proteins

  • Karen M. Nagel
Chapter
Part of the AAPS Introductions in the Pharmaceutical Sciences book series (AAPSINSTR)

Abstract

Over the past four decades, recombinant proteins and peptides have gained an increasingly important place in pharmacotherapy, beginning with the introduction of recombinant insulin in 1982. With the advent of recombinant technology in manufacturing, the reliance on animal and human sources diminished, safety and supply of proteins and peptides increased, and costs decreased. This chapter will focus on the considerations specific to formulation, development, storage and delivery of those protein and peptide pharmaceuticals.

Keywords

Thermal denaturation of proteins Mechanical denaturation of proteins Adsorption of proteins Chemical instabilities of proteins Neutralizing antibodies Immunogenicity of proteins and peptides PEGylation Glycosylation Protein drug delivery 

References

  1. 1.
    Drug Bank Website. Open data drug and drug target database www.drugbankca. Accessed July 2012;30 SRC - BaiduScholar.
  2. 2.
    Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12(7):e0181748.  https://doi.org/10.1371/journal.pone.0181748. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Middaugh CR, Siahann TJ. Pharmaceutical biotechnology. In: Sinko P, editor. Martin’s physical pharmacy and pharmaceutical sciences. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2011.Google Scholar
  4. 4.
    Branden C, Tooze J, York NY. The building blocks. In: Introduction to protein structure. New York: Garland Publishing, Inc; 1991.Google Scholar
  5. 5.
    Jorgensen L, Nielsen HM, Frokjaer S. Biotechnology-based pharmaceuticals. In: Florence AT, Siepmann J, editors. Modern pharmaceutics volume 2: applications and advances. 5th ed. New York: Informa Healthcare; 2009.Google Scholar
  6. 6.
    Manning MC, Chou DK, Murphy BM, et al. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.CrossRefGoogle Scholar
  7. 7.
    Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO. Enhancement of immune response of HBsAg loaded poly (L-lactic acid) microspheres against hepatitis B through incorporation of alum and chitosan. J Microencapsul. 2007;24(6):539–52.CrossRefGoogle Scholar
  8. 8.
    Meinhold DW, Wright PE. Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion. Proc Natl Acad Sci U S A. 2011;108(22):9078–83.CrossRefGoogle Scholar
  9. 9.
    Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Develop Technol. 2007;12:505–23.CrossRefGoogle Scholar
  10. 10.
    Nagel K, Karash A. Biotechnology. In: Desai A, Lee M, editors. Gibaldi's drug delivery Systems in Pharmaceutical Care new American Society of Health Systems pharmacists. New York: American Society of Health System's Pharmacists; 2007.Google Scholar
  11. 11.
    Cromwell MEM, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006;8(3):E572–E79.CrossRefGoogle Scholar
  12. 12.
    Mahler H-C, Friess W, Grauschopf U, et al. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.CrossRefGoogle Scholar
  13. 13.
    Crommelin DJA. Formulation of biotech products, including biopharmaceutical considerations. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  14. 14.
    Chang LL, Pikal MJ. Mechanism of protein stabilization in the solid state. J Pharm Sci. 2009; 98(9):2886–908.CrossRefGoogle Scholar
  15. 15.
    Ho RJY, Gibaldi M. Pharmacology, toxicology, therapeutic dosage formulations, and clinical response. In: Ho RJY, Gibaldi M, editors. Biotechnology and biopharmaceuticals transforming proteins and genes into drugs. Hoboken: Wiley-Liss; 2003.CrossRefGoogle Scholar
  16. 16.
    Washington N WCaWC. Cell membranes, epithelial barriers and drug absorption. In: Washington N WCaWC. Physiological pharmaceutics: barriers to drug absorption. 2nd ed. London: Taylor and Francis; 2001.Google Scholar
  17. 17.
    Schellekens H, Jiskoot W. Immunogenicity of therapeutic proteins. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  18. 18.
    Farrell RA, Marta M, Gaeguta AJ, Souslova V, Giovannoni G, Creeke PI. Development of resistance to biologic therapies with reference to IFN-β. Rheumatology. 2012;51(4):590–9.CrossRefGoogle Scholar
  19. 19.
    Schellekens H. Biosimilar therapeutic agents: issues with bioequivalence and immunogenicity. Eur J Clin Investig. 2004;34(12):797–9.CrossRefGoogle Scholar
  20. 20.
    McKoy JM, Stonecash RE, Cournoyer D, et al. Epoetin-associated pure red cell aplasia: past, present, and future considerations. Transfusion. 2008;48(8):1754–62.CrossRefGoogle Scholar
  21. 21.
    Bennett CL, Cournoyer D, Carson KR, et al. Long-term outcome of individuals with pure red cell aplasia and antierythropoietin antibodies in patients treated with recombinant epoetin: a follow-up report from the research on adverse drug events and reports (RADAR) project. Blood. 2005;106(10):3343–7.CrossRefGoogle Scholar
  22. 22.
    Medicine UNLo. Clinical trials website secondary clinical trials Website http://www.clinicaltrials.gov.
  23. 23.
    Sola RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs. 2010;24(1):9–21.  https://doi.org/10.2165/11530550-000000000-00000. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Anand B, Deng R, Theil FP, et al. Monoclonal antibodies: from structure to therapeutic application. In: Crommelin DJA, SRaMB, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  25. 25.
    Sindelar RD, Crommelin DJA, Meibohm B, York NY. Genomics, other “omics” technologies, personalized medicine, and additional biotechnology-related techniques. In: Sindelar RD, Meibohm BE, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  26. 26.
    Foote M. Hematopoietic growth factors. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  27. 27.
    Ryff JC, Bordens RW, Pestka S. Interferons and interleukins. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  28. 28.
    Drug facts and comparisons secondary drug facts and comparisons 2018. http://www.lww.com/Product/9781574393705.
  29. 29.
    Ahad MA, Alim MA, Ekram A. Interferon to PEG-interferon: a review. TAJ 2004;17(2 SRC - GoogleScholar):113–16.Google Scholar
  30. 30.
    Bhalla S. Parenteral drug delivery. In: Desai A, Lee M, editors. Gibaldis drug delivery systems in pharmaceutical care. New York: American Society of HealthSystems Pharmacists; 2007.Google Scholar
  31. 31.
    Jahn LG, Capurro JJ, Levy BL. Comparative dose accuracy of durable and patch insulin infusion pumps. J Diabetes Sci Technol. 2013;7(4):1011–20.  https://doi.org/10.1177/193229681300700425. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Millstein R, Becerra NM, Shubrook JH. Insulin pumps: Beyond basal-bolus. Cleve Clin J Med. 2015;82(12):835–42.  https://doi.org/10.3949/ccjm.82a.14127. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  33. 33.
    Kapitza C, Fein S, Heinemann L, Schleusener D, Levesque S, Strange P. Basal-prandial insulin delivery in type 2 diabetes mellitus via the V-go: a novel continuous subcutaneous infusion device. J Diabetes Sci Technol. 2008;2(1):40–6.CrossRefGoogle Scholar
  34. 34.
    Zisser HC. The OmniPod insulin management system: the latest innovation in insulin pump therapy. Diabetes Ther. 2010;1(1):10–24.CrossRefGoogle Scholar
  35. 35.
    Beals JM. DMaKP. Insulin. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  36. 36.
    Crommelin D, Winden EV, Mekking A. Delivery of pharmaceutical proteins. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  37. 37.
    Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB.Google Scholar
  38. 38.
    Lazarus RA, Wagener JS. Recombinant human deoxyribonuclease I. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  39. 39.
    Ho RJY, Gibaldi M. Enzymes. In: Ho RJY, Gibaldi M, editors. Biotechnology and biopharmaceuticals: transforming proteins and genes into drugs. Hoboken: Wiley-Liss; 2003.CrossRefGoogle Scholar
  40. 40.
    Angelo R, Rousseau K, Grant M, Leone-Bay A, Richardson P. Technosphere insulin: defining the role of Technosphere particles at the cellular level. J Diabetes Sci Technol. 2009;1(3):545–54.CrossRefGoogle Scholar
  41. 41.
    P J. MannKind fights on with its diabetes game-changer Afrezza. 2012 June 12, 2012; 12 SRC - BaiduScholar. http://seekingalpha.com/article/704841-mannkind-fights-on-with-its-diabetes-game-changer-afrezza. Accessed 16 Aug 2012.
  42. 42.
    Klonoff DC. Afrezza inhaled insulin: the fastest-acting FDA-approved insulin on the market has favorable properties. J Diabetes Sci Technol. 2014;8(6):1071–3.  https://doi.org/10.1177/1932296814555820. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Claxton A, Baker LD, Hanson A, et al. Long acting intranasal insulin Detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia. J Alzheimers Dis. 2015;45(4):1269–70.  https://doi.org/10.3233/jad-159002. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  44. 44.
    Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia. J Alzheimers Dis. 2015;44(3):897–906.  https://doi.org/10.3233/jad-141791. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  45. 45.
    Craft S, Claxton A, Baker LD, et al. Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: a pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325–34.  https://doi.org/10.3233/jad-161256. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maimaiti S, Anderson KL, Demoll C, et al. Intranasal insulin improves age-related cognitive deficits and reverses electrophysiological correlates of brain aging. J Gerontol A Biol Sci Med Sci. 2016;71(1):30–9.  https://doi.org/10.1093/gerona/glu314. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  47. 47.
    Heinemann L, Jacques Y. Oral insulin and buccal insulin: a critical reappraisal. J Diabetes Sci Technol. 2009;3(3):568–84.CrossRefGoogle Scholar
  48. 48.
    Palermo A, Napoli N, Manfrini S, Lauria A, Strollo R, Pozzilli P. Buccal spray insulin in subjects with impaired glucose tolerance: the prevoral study. Diabetes Obes Metab. 2011;13(1):42–6.  https://doi.org/10.1111/j.1463-1326.2010.01312.x. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  49. 49.
    Review OP. Ocular hypertension - pipeline review, H1 2015.Google Scholar
  50. 50.
    Bernstein G. Delivery of insulin to the buccal mucosa utilizing the RapidMist™ system. Expert Opin Drug Deliv. 2008;5(9):1047–55.CrossRefGoogle Scholar
  51. 51.
    Biotechnology G. Generex biotechnology Website. Secondary generex biotechnology Website. http://generex.com/.
  52. 52.
    Balfour JA, Noble S. Becaplermin. BioDrugs. 1999;11(5):359–64.CrossRefGoogle Scholar
  53. 53.
    Crowley P, Martini L. Drug-excipient interactions. Pharm Technol Eur. 2001;13(3):26–8.Google Scholar
  54. 54.
    Meyer BK, Ni A, Hu B, Shi L. Antimicrobial preservative use in parenteral products: past and present. J Pharm Sci. 2007;96(12):3155–6.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Karen M. Nagel
    • 1
  1. 1.Chicago College of PharmacyMidwestern UniversityDowners GroveUSA

Personalised recommendations