Advertisement

Principles of Recombinant DNA Technology

  • Karen M. Nagel
Chapter
Part of the AAPS Introductions in the Pharmaceutical Sciences book series (AAPSINSTR)

Abstract

Recombinant DNA technology and other aspects of biotechnology are a far newer area of pharmaceutical research and development than areas related to small molecule pharmaceuticals, and the methods employed in all areas of the drug development process, from drug discovery to the manufacturing protocols, equipment, control parameters and testing methodologies required by the FDA are substantially different than those used with small molecule drugs. Beginning with the elucidation of the structure of DNA, advances in molecular biology techniques have led to dramatic progress in medical research, disease diagnosis and drug development and have introduced a new vocabulary to the pharmaceutical industry.

Keywords

Recombinant DNA technology Glycosylation PEGylation Fusion proteins Biopharming New Animal Drug Protein characterization 

References

  1. 1.
    Middaugh CR, Siahann TJ. Pharmaceutical biotechnology. In: Sinko P, editor. Martin’s physical pharmacy and pharmaceutical sciences. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2011.Google Scholar
  2. 2.
    Barnum SR, Belmont CA. Biotechnology: old and new. In: Biotechnology: an introduction. 2nd ed. Thomson Brooks/Cole: Belmont; 2005.Google Scholar
  3. 3.
    Hoekstra WPM, Smeekens SCM. Molecular biotechnology. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  4. 4.
    Nagel K, Karash A. Biotechnology. In: Desai A, Lee M, editors. Gibaldi's drug delivery systems in pharmaceutical care new American society of HealthSystems pharmacists. New York: American Society of Health System's Pharmacists; 2007.Google Scholar
  5. 5.
    Drlica K. Cutting and joining DNA. In: Understanding DNA and gene cloning: a guide for the curious. 4th ed. Newark: Wiley; 2004.Google Scholar
  6. 6.
    Drlica K. Preview: life as interacting molecules. Understanding DNA and gene cloning: a guide for the curious. 4th ed. Newark: Wiley; 2004.Google Scholar
  7. 7.
    Watson JD. The human genome: life’s screenplay. In: DNA the secret of life. New York NY, Alfred A. Knopf; 2003.Google Scholar
  8. 8.
    Barnum SR, Belmont CA. Microbial biotechnology. In: Biotechnology: an introduction. 2nd ed. Thomson Brooks/Cole: Belmont; 2005.Google Scholar
  9. 9.
    Kadir F, Hamers M, Ives P. Production and downstream processing of biotech compounds. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  10. 10.
    Berthold W, Walter J. Protein purification: aspects of processes for pharmaceutical products. Biologicals. 1994;22(2):135–50.  https://doi.org/10.1006/biol.1994.1020. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  11. 11.
    Sindelar RD, Crommelin DJA, Meibohm B, York NY. Genomics, other “omics” technologies, personalized medicine, and additional biotechnology-related techniques. In: Sindelar RD, Meibohm BE, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  12. 12.
    Maxmen A. Drug-making plant blooms. Nature. 2012;485(7397):160.  https://doi.org/10.1038/485160a. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  13. 13.
    Moldovan D, Bernstein JA, Cicardi M. Recombinant replacement therapy for hereditary angioedema due to C1 inhibitor deficiency. Immunotherapy. 2015;7(7):739–52.  https://doi.org/10.2217/imt.15.44. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  14. 14.
    Frampton JE. Sebelipase alfa: a review in lysosomal acid lipase deficiency. Am J Cardiovasc Drugs. 2016;16(6):461–8.  https://doi.org/10.1007/s40256-016-0203-2. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  15. 15.
    Rudolph NS. Biopharmaceutical production in transgenic livestock. TIBTECH 2000;17 SRC - GoogleScholar:367–74.CrossRefGoogle Scholar
  16. 16.
    Bratspies RM. Consuming (f)ears of corn: public health and biopharming. Am J Law Med. 2004;30(2–3):371–404.CrossRefGoogle Scholar
  17. 17.
    Holtz BR, Berquist BR, Bennett LD, et al. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnol J. 2015;13(8):1180–90.  https://doi.org/10.1111/pbi.12469. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  18. 18.
    Echlard Y, Ziomeck CA, Meade HM. Production of recombinant therapeutic proteins in the milk of transgenic animals. Biopharm Int. 2006;19(8):36.Google Scholar
  19. 19.
    Scientists FoA. Case studies in agricultural biosecurity. Secondary case studies in agricultural biosecurity 2012. http://www.fas.org/biosecurity/education/dualuse-agriculture/2.-agricultural-biotechnology/us-regulation-of-biopharming-in-animals.html.
  20. 20.
    Lambrecht B, York NY. Biotech and the paradox of plenty. In: Dinner at the new gene Caf how genetic engineering is changing what we eat how we live and the global politics of food new: Thomas Dunner Books; 2001.Google Scholar
  21. 21.
    Yang L, Wakasa Y, Takaiwa F. Biopharming to increase bioactive peptides in rice seed. J AOAC Int. 2008;91(4):957–64.PubMedGoogle Scholar
  22. 22.
    Zhang Y, Li D, Jin X, Huang Z. Fighting Ebola with ZMapp: spotlight on plant-made antibody. Science China. Life Sci. 2014;57(10):987–8.  https://doi.org/10.1007/s11427-014-4746-7. [published Online First: Epub Date].CrossRefGoogle Scholar
  23. 23.
    Freese B, Hansen M, Gurian-Sherman D. Pharmaceutical rice in California: potential risks to consumers, the environment and the California rice industry. Secondary Pharmaceutical rice in California: potential risks to consumers, the environment and the California rice industry 2012. http://www.centerforfoodsafety.org/pubs/CARiceReport7.2004.pdf.
  24. 24.
    Ribeiro SWN. Babies as guinea pigs. Secondary Babies as guinea pigs 2012. http://www.nwrage.org/content/babies-guinea-pigs.
  25. 25.
    Tang L, Cui T, Wu JJ, Liu-Mares W, Huang N, Li J. A rice-derived recombinant human lactoferrin stimulates fibroblast proliferation, migration, and sustains cell survival. Wound Repair Regen. 2010;18(1):123–31.  https://doi.org/10.1111/j.1524-475X.2009.00563.x. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  26. 26.
    Miller HI. Will we reap what biopharming sows? Nature Biotechnol. 2003;21:480.CrossRefGoogle Scholar
  27. 27.
    Murphy DJ. Improving containment strategies in biopharming. Plant Biotechnol J. 2007;5(5):555–69.  https://doi.org/10.1111/j.1467-7652.2007.00278.x. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  28. 28.
    Qiu X, Wong G, Audet J, et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014;514(7520):47–53.  https://doi.org/10.1038/nature13777. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lexicomp Online®. Pediatric & Neonatal Lexi-Drugs® , Hudson, Ohio: Lexi-Comp, Inc. Secondary Pediatric & Neonatal Lexi-Drugs® , Hudson, Ohio: Lexi-Comp, Inc. April 12, 2018. https://online.lexi.com/lco/action/doc/retrieve/docid/patch_f/7073.
  30. 30.
    Health CAfDaTi. C1 esterase inhibitor for prophylaxis against hereditary angioedema attacks: a review of the clinical effectiveness, cost-effectiveness, and guidelines: Canadian Agency for Drugs and Technologies in Health.Google Scholar
  31. 31.
    Goldenberg MM. Pharmaceutical approval update. P & T Peer Rev J Formul Manag. 2014;39(9):619–20, 26.Google Scholar
  32. 32.
    Feussner A, Kalina U, Hofmann P, Machnig T, Henkel G. Biochemical comparison of four commercially available C1 esterase inhibitor concentrates for treatment of hereditary angioedema. Transfusion. 2014;54(10):2566–73.  https://doi.org/10.1111/trf.12678. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cruz MP. Conestat alfa (ruconest): first recombinant c1 esterase inhibitor for the treatment of acute attacks in patients with hereditary angioedema. P & T Peer Rev J Formul Manag. 2015;40(2):109–14.Google Scholar
  34. 34.
    Glovsky MM. C1 esterase inhibitor transfusions in patients with hereditary angioedema. Ann Allergy Asthma Immunol. 1998;80(6):439–40.  https://doi.org/10.1016/S1081-1206(10)63065-7. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  35. 35.
    Visentin DE, Yang WH, Karsh J. C1-esterase inhibitor transfusions in patients with hereditary angioedema. Ann Allergy Asthma Immunol. 1998;80(6):457–61.  https://doi.org/10.1016/S1081-1206(10)63067-0. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  36. 36.
    Wahn V, Aberer W, Eberl W, et al. Hereditary angioedema (HAE) in children and adolescents--a consensus on therapeutic strategies. Eur J Pediatr. 2012;171(9):1339–48.  https://doi.org/10.1007/s00431-012-1726-4. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kawalec P, Holko P, Paszulewicz A. Cost-utility analysis of Ruconest((R)) (conestat alfa) compared to Berinert((R)) P (human C1 esterase inhibitor) in the treatment of acute, life-threatening angioedema attacks in patients with hereditary angioedema. Postepy Dermatol Alergol. 2013;30(3):152–8.  https://doi.org/10.5114/pdia.2013.35616. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stavenhagen K, Kayili HM, Holst S, et al. N- and O-glycosylation analysis of human C1-inhibitor reveals extensive mucin-type O-glycosylation. Mol Cell Proteomics. 2018;17(6):1225–38.  https://doi.org/10.1074/mcp.RA117.000240. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  39. 39.
    Karnaukhova E. C1-esterase inhibitor: biological activities and therapeutic applications. J Hematol Thromboemb Dis. 2013;1(1)  https://doi.org/10.4172/2329-8790.1000113. [published Online First: Epub Date].
  40. 40.
    Longhurst H. Optimum use of acute treatments for hereditary angioedema: evidence-based expert consensus. Front Med. 2017;4:245.  https://doi.org/10.3389/fmed.2017.00245. [published Online First: Epub Date].CrossRefGoogle Scholar
  41. 41.
    Su K, Donaldson E, Sharma R. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa. Appl Clin Genet. 2016;9:157–67.  https://doi.org/10.2147/TACG.S86760. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shirley M. Sebelipase alfa: first global approval. Drugs. 2015;75(16):1935–40.  https://doi.org/10.1007/s40265-015-0479-6. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  43. 43.
    Erwin AL. The role of sebelipase alfa in the treatment of lysosomal acid lipase deficiency. Ther Adv Gastroenterol. 2017;10(7):553–62.  https://doi.org/10.1177/1756283X17705775. [published Online First: Epub Date].CrossRefGoogle Scholar
  44. 44.
    Burton BK, Balwani M, Feillet F, et al. A phase 3 trial of Sebelipase alfa in lysosomal acid lipase deficiency. N Engl J Med. 2015;373(11):1010–20.  https://doi.org/10.1056/NEJMoa1501365. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  45. 45.
    Valayannopoulos V, Malinova V, Honzik T, et al. Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J Hepatol. 2014;61(5):1135–42.  https://doi.org/10.1016/j.jhep.2014.06.022. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jones SA, Rojas-Caro S, Quinn AG, et al. Survival in infants treated with sebelipase alfa for lysosomal acid lipase deficiency: an open-label, multicenter, dose-escalation study. Orphanet J Rare Dis. 2017;12(1):25.  https://doi.org/10.1186/s13023-017-0587-3. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Reiner Z, Guardamagna O, Nair D, et al. Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis. 2014;235(1):21–30.  https://doi.org/10.1016/j.atherosclerosis.2014.04.003. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  48. 48.
    Balwani M, Breen C, Enns GM, et al. Clinical effect and safety profile of recombinant human lysosomal acid lipase in patients with cholesteryl ester storage disease. Hepatology. 2013;58(3):950–7.  https://doi.org/10.1002/hep.26289. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Koshland DE Jr. The molecule of the year. Science. 1989;246(4937):1541.CrossRefGoogle Scholar
  50. 50.
    Powledge TM. Breakthroughs in bioscience: the polymerase chain reaction. 2012; 30 SRC - GoogleScholar. http://www.faseb.org/LinkClick.aspx?fileticket=pOHU1pwX0HI%3d&tabid=418. Accessed 30 Aug 2012.
  51. 51.
    Ho RJY, Gibaldi M. Advanced drug delivery. In: Ho RJY, Gibaldi M, editors. Biotechnology and biopharmaceuticals transforming proteins and genes into drugs. Hoboken: Wiley-Liss; 2003.CrossRefGoogle Scholar
  52. 52.
    Li J, Zhu Z. Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin. 2010;31(9):1198–207.  https://doi.org/10.1038/aps.2010.120. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lee TY, Tjin Tham Sjin RM, Movahedi S, et al. Linking antibody fc domain to endostatin significantly improves endostatin half-life and efficacy. Clin Cancer Res. 2008;14(5):1487–93.  https://doi.org/10.1158/1078-0432.ccr-07-1530. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  54. 54.
    Sola RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs. 2010;24(1):9–21.  https://doi.org/10.2165/11530550-000000000-00000. [published Online First: Epub Date].CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ho RJY, Gibaldi M. Pharmacology, toxicology, therapeutic dosage formulations, and clinical response. In: Ho RJY, Gibaldi M, editors. Biotechnology and biopharmaceuticals transforming proteins and genes into drugs. Hoboken: Wiley-Liss; 2003.CrossRefGoogle Scholar
  56. 56.
    Anand B, Deng R, Theil FP, et al. Monoclonal antibodies: from structure to therapeutic application. In: Crommelin DJA SRaMB, ed. Pharmaceutical biotechnology: fundamentals and applications. 3rdrd ed. New York: Informa Healthcare, 2008.Google Scholar
  57. 57.
    Foote M. Hematopoietic growth factors. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  58. 58.
    Ryff JC, Bordens RW, Pestka S. Interferons and interleukins. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  59. 59.
    Ho RJY, Gibaldi M. Enzymes. In: Ho RJY, Gibaldi M, editors. Biotechnology and biopharmaceuticals: transforming proteins and genes into drugs. Hoboken: Wiley-Liss; 2003.CrossRefGoogle Scholar
  60. 60.
    Ahad MA, Alim MA, Ekram A. Interferon to PEG-interferon: a review. TAJ 2004;17(2 SRC - GoogleScholar):113–16.Google Scholar
  61. 61.
    FDA. Quality considerations in demonstrating biosimilarity to a reference protein product. Secondary quality considerations in demonstrating biosimilarity to a reference protein product 2012. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM291134.pdf.
  62. 62.
    FDA. Scientific considerations in demonstrating biosimilarity to a reference product. Secondary scientific considerations in demonstrating biosimilarity to a reference product 2012. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM291128.pdf.
  63. 63.
    Jorgensen L, Nielsen HM, Frokjaer S. Biotechnology-based pharmaceuticals. In: Florence AT, Siepmann J, editors. Modern pharmaceutics volume 2: applications and advances. 5th ed. New York: Informa Healthcare; 2009.Google Scholar
  64. 64.
    Jabs A. Determination of secondary structure in proteins by Fourier transform infrared spectroscopy. 2012; 10 SRC - GoogleScholar. http://www.ijb-jena.de/lmgLibDoc/ftir/IMAGE_FTIR (accessed September 10, 2012.).
  65. 65.
    Brooks G. An introduction to basic molecular biology. In: Brooks G, editor. Biotechnology in healthcare: an introduction to biopharmaceuticals. London: Pharmaceutical Press; 1998.Google Scholar
  66. 66.
    Laboratories AP. Information on circular dichroism. Secondary Information on circular dichroism 2012. http://www.ap-lab.com/circular_dichroism.htm.
  67. 67.
    W G. FTIR analysis of protein structure. 2012; 10 SRC - GoogleScholar(September 10, 2012). http://www.chem.uwec.edu/Chem455_S05/Pages/Manuals/FTIR_of_proteins.pdf.
  68. 68.
    Thomas GJ Jr. Raman spectroscopy of protein and nucleic acid assemblies. Annu Rev Biophys Biomol Struct. 1999;28:1–27.  https://doi.org/10.1146/annurev.biophys.28.1.1. [published Online First: Epub Date].CrossRefPubMedGoogle Scholar
  69. 69.
    Arakawa T, Philo JS. Biophysical and biochemical analysis of recombinant proteins. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York: Informa Healthcare; 2008.Google Scholar
  70. 70.
    Sinko P. Colloidal dispersions. In: Sinko PJ, ed. Martin’s physical pharmacy and pharmaceutical sciences. 6thth ed. ed. Baltimore: Lippincott Williams & Wilkins, 2011.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Karen M. Nagel
    • 1
  1. 1.Chicago College of PharmacyMidwestern UniversityDowners GroveUSA

Personalised recommendations