Skip to main content

The Role of Photon Statistics in Visual Perception

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 217))

Abstract

We address the question of how fundamental photon fluctuations are perceived by a live visual system. The discussion is focused on specific type of photoreceptor cells within the eye , known as retinal rod cells. Rod cells provide vision under low light conditions and they are sensitive at a single photon level. We review experiments on interaction of the rod cells with light sources of different photon statistics, including coherent , pseudo-thermal , and single-photon sources . Accurate control over photon statistics of light stimuli, combined with technique for the readout of rod cells response, enable precise and unambiguous characterization of intrinsic features of the visual system at single and discrete photon levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.E. Dowling, The Retina: An Approachable Part of the Brain (Belknap Press of Harvard University Press, Cambridge, MA, 2012). Revised Edition

    Google Scholar 

  2. C.R. Braekevelt, S.A. Smith, B.J. Smith, Fine structure of the retinal photoreceptors of the barred owl (Strix varia). Histol. Histopathol. 11(1), 79–88 (1996)

    Google Scholar 

  3. M. Joseph, A. Corless, Minimum diameter limit for retinal rod outer segment disks. Development of Order in the Visual System, ed. by S.R. Hilfer et al. (Springer, New York Inc., 1986), pp. 127–142

    Google Scholar 

  4. K. Palczewski, G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75, 743–767 (2006)

    Article  Google Scholar 

  5. M.L. Woodruff, M.D. Bownds, Amplitude, kinetics, and reversibility of a light-induced decrease in guanosine 3′,5′-cyclic monophosphate in frog photoreceptor membranes. J. Gen. Physiol. 73(5), 629–653 (1979)

    Article  Google Scholar 

  6. H.W. Choe, Y.J. Kim, J.H. Park, T. Morizumi, E.F. Pai, N. Krauss, K.P. Hofmann, P. Scheerer, O.P. Ernst, Crystal structure of metarhodopsin II. Nature 471, 651–655 (2011)

    Article  ADS  Google Scholar 

  7. K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, I. Le Trong, D.C. Teller, T. Okada, R.E. Stenkamp et al., Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000)

    Article  ADS  Google Scholar 

  8. L. Stryer, Exploring light and life. J. Biol. Chem. 287, 15164–15173 (2012)

    Article  Google Scholar 

  9. T.D. Lamb, Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc. Natl. Acad. Sci. U.S.A. 93, 566–570 (1996)

    Article  ADS  Google Scholar 

  10. T.D. Lamb, E.N. Pugh Jr., Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest. Ophthalmol. Vis. Sci. 47, 5138–5152 (2006)

    Article  Google Scholar 

  11. E.N. Pugh Jr., T.D. Lamb, Cyclic GMP and calcium: the internal messengers of excitation and adaptation in vertebrate photoreceptors. Vis. Res. 30, 1923–1948 (1990)

    Article  Google Scholar 

  12. R.H. Cote, M.A. Brunnock, Intracellular cGMP concentration in rod photoreceptors is regulated by binding to high and moderate affinity cGMP binding sites. Biol. Chem. 268(23), 17190–17198 (1993)

    Google Scholar 

  13. X. Zhang, R.H. Cote, cGMP signaling in vertebrate retinal photoreceptor cells. Front Biosci. 10, 1191–1204 (2005)

    Article  Google Scholar 

  14. E.E. Fesenko, S.S. Kolesnikov, A.L. Lyubarsky, Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310–313 (1985)

    Article  ADS  Google Scholar 

  15. W.H. Cobbs, E.N. Pugh Jr., Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation. Nature 313, 585–587 (1985)

    Article  ADS  Google Scholar 

  16. K. Matulef, W.N. Zagotta, Cyclic nucleotide-gated ion channels. Annu. Rev. Cell Dev. Biol. 19, 23–44 (2003)

    Article  Google Scholar 

  17. R.R. Birge, Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. Biophys. Acta 1016, 293–327 (1990)

    Article  Google Scholar 

  18. B.K.-K. Fung, J.B. Hurley, L. Stryer, Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc. Natl. Acad. Sci. U.S.A. 78, 152–156 (1981)

    Article  ADS  Google Scholar 

  19. N. Sim, M.F. Cheng, D. Bessarab, C.M. Jones, L.A. Krivitsky, Measurement of photon statistics with live photoreceptor cells. Phys. Rev. Lett. 109, 113601 (2012)

    Article  ADS  Google Scholar 

  20. M.E. Burns, E.N. Pugh Jr., Lessons from photoreceptors: turning off G-protein signaling in living cells. Physiology (Bethesda) 25, 72–84 (2010)

    Google Scholar 

  21. C.M. Krispel, D. Chen, N. Melling, Y.J. Chen, K.A. Martemyanov, N. Quillinan, V.Y. Arshavsky, T.G. Wensel, C.K. Chen, M.E. Burns, RGS expression rate-limits recovery of rod photoresponses. Neuron 51, 409–416 (2006)

    Article  Google Scholar 

  22. C.K. Chen, M.L. Woodruff, F.S. Chen, D. Chen, G.L. Fain, Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J. Neurosci. 30, 1213–1220 (2010)

    Article  Google Scholar 

  23. W.H. Cobbs, E.N. Pugh Jr., Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamander, Ambystoma tigrinum. J. Physiol. 394, 529–572 (1987)

    Article  Google Scholar 

  24. P. Bisegna, G. Caruso, D. Andreucci, L. Shen, V.V. Gurevich, H.E. Hamm, E. DiBenedetto, Diffusion of the second messengers in the cytoplasm acts as a variability suppressor of the single photon response in vertebrate phototransduction. Biophys. J. 94, 3363–3383 (2008)

    Article  ADS  Google Scholar 

  25. F. Rieke, D.A. Baylor, Origin of reproducibility in the responses of retinal rods to single photons. Biophys. J. 75, 1836–1857 (1998)

    Article  ADS  Google Scholar 

  26. U.B. Kaupp, R. Seifert, Cyclic nucleotide-gated ion channels. Physiol. Rev. 82(3), 769–824 (2002)

    Article  Google Scholar 

  27. E. Eismann, F. Müller, S.H. Heinemann, U.B. Kaupp, A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. Proc. Natl. Acad. Sci. U.S.A. 91(3), 1109–1113 (1994)

    Article  ADS  Google Scholar 

  28. K.W. Yau, D.A. Baylor, Cyclic GMP activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 12, 289–327 (1989)

    Article  Google Scholar 

  29. F. Rieke, D.A. Baylor, Single photon detection by rod cells of the retina. Rev. Mod. Phys. 70, 1027–1036 (1998)

    Article  ADS  Google Scholar 

  30. T. Doan, A. Mendez, P.B. Detwiler, J. Chen, F. Rieke, Multiple phosphorylation sites confer reproducibility of the rod’s single-photon responses. Science 313, 530–533 (2006). PMID: 16873665, http://dx.doi.org/10.1126/science.1126612

    Article  ADS  Google Scholar 

  31. A.W. Azevedo, T. Doan, H. Moaven, I. Sokal, F. Baameur, S.A. Vishnivetskiy, K.T. Homan, J.J. Tesmer, V.V. Gurevich, J. Chen, F. Rieke, C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor. Elife 4 (2015). https://doi.org/10.7554/elife.05981

  32. V. Torre, H.R. Matthews, T.D. Lamb, Role of calcium in regulating the cyclic GMP cascade of phototransduction in retinal rods. Proc. Natl. Acad. Sci. U.S.A. 83(18), 7109–7113 (1986)

    Article  ADS  Google Scholar 

  33. M. Capovilla, L. Cervetto, V. Torre, The effect of phosphodiesterase inhibitors on the electrical activity of toad rods. J. Physiol. 343, 277–294 (1983)

    Article  Google Scholar 

  34. M. Capovilla, L. Cervetto, V. Torre, Effects of changing external potassium and chloride concentrations on the photoresponses of Bufo bufo rods. J. Physiol. 307, 529–551 (1980)

    Article  Google Scholar 

  35. E.N. Pugh Jr., T.D. Lamb, Amplification and kinetics of the activation steps in phototransduction. Biochim. Biophys. Acta 1141(2–3), 111–149 (1993)

    Article  Google Scholar 

  36. D.A. Baylor, B.J. Nunn, J.L. Schnapf, The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J. Physiol. 357, 575–607 (1984)

    Article  Google Scholar 

  37. S. Asteriti, S. Grillner, L. Cangiano, A Cambrian origin for vertebrate rods. eLife 4, e07166 (2015). https://doi.org/10.7554/elife.07166

  38. J.R. Sanes, S.L. Zipursky, Design principles of insect and vertebrate visual systems. Neuron 66(1), 15–36 (2010). https://doi.org/10.1016/j.neuron.2010.01.018

    Article  Google Scholar 

  39. C. Montell, Visual transduction in Drosophila. Annu. Rev. Cell Dev. Biol. 15, 231–268 (1999)

    Article  Google Scholar 

  40. C. Montell, Drosophila visual transduction. Trends Neurosci. 35, 356–363 (2012)

    Article  Google Scholar 

  41. R.C. Hardie, M. Juusola, Phototransduction in Drosophila. Curr. Opin. Neurobiol. 34C, 37–45 (2015)

    Article  Google Scholar 

  42. R.C. Hardie, Phototransduction in Drosophila melanogaster. J. Exp. Biol. 204(Pt 20), 3403–3409 (2001)

    Google Scholar 

  43. A. Auerbach, F. Sachs, Flickering of a nicotinic ion channel to a subconductance state. Biophys. J. 42(1), 1–10 (1983)

    Article  ADS  Google Scholar 

  44. O. Alvarez, C. Gonzalez, R. Latorre, Counting channels: a tutorial guide on ion channel fluctuation analysis. Adv. Physiol. Educ. 26(1–4), 327–341 (2002)

    Article  Google Scholar 

  45. I. Lestas, G. Vinnicombe, J. Paulsson, Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010)

    Article  ADS  Google Scholar 

  46. D.G. Spiller, C.D. Wood, D.A. Rand, M.R. White, Measurement of single-cell dynamics. Nature 465, 736–745 (2010)

    Article  ADS  Google Scholar 

  47. P.N. Steinmetz, R.L. Winslow, Optimal detection of flash intensity differences using rod photocurrent observations. Neural Comput. 11(5), 1097–1111 (1999)

    Article  Google Scholar 

  48. R.A. Yotter, D.M. Wilson, A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sens. J. 3, 288–303 (2003)

    Article  ADS  Google Scholar 

  49. G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)

    Article  ADS  Google Scholar 

  50. M. Dandin, P. Abshire, High signal-to-noise ratio avalanche photodiodes with perimeter field gate and active readout. IEEE Electron Device Lett. 33(4), 570–572 (2012)

    Article  ADS  Google Scholar 

  51. K. Kolb, Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors. Opt. Eng. 53(8), 081904 (2014)

    Article  ADS  Google Scholar 

  52. J.E. Sulston, E. Schierenberg, J.G. White, J.N. Thomson, The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100(1), 64–119 (1983)

    Article  Google Scholar 

  53. A.S. Chiang, C.Y. Lin, C.C. Chuang, H.M. Chang, C.H. Hsieh, C.W. Yeh, C.T. Shih, J.J. Wu, G.T. Wang, Y.C. Chen, C.C. Wu, G.Y. Chen, Y.T. Ching, P.C. Lee, C.Y. Lin, H.H. Lin, C.C. Wu, H.W. Hsu, Y.A. Huang, J.Y. Chen, H.J. Chiang, C.F. Lu, R.F. Ni, C.Y. Yeh, J.K. Hwang, Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21(1), 1–11 (2011)

    Article  Google Scholar 

  54. L. Chittka, J. Niven, Are bigger brains better? Curr. Biol. 19, R995–R1008 (2009)

    Article  Google Scholar 

  55. S. Herculano-Houzel, The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. U.S.A. 109(Suppl 1), 10661–10668 (2012)

    Article  Google Scholar 

  56. S.M. Wu, Synaptic transmission in the outer retina. Annu. Rev. Physiol. 56, 141–168 (1994)

    Article  Google Scholar 

  57. W. Bialek, W.G. Owen, Temporal filtering in retinal bipolar cells. Elements of an optimal computation? Biophys. J. 58(5), 1227–1233 (1990)

    Article  ADS  Google Scholar 

  58. H. Markram, E. Muller, S. Ramaswamy, M.W. Reimann, M. Abdellah, C.A. Sanchez, A. Ailamaki, L. Alonso-Nanclares, N. Antille, S. Arsever, G.A. Kahou, T.K. Berger, A. Bilgili, N. Buncic, A. Chalimourda, G. Chindemi, J.D. Courcol, F. Delalondre, V. Delattre, S. Druckmann, R. Dumusc, J. Dynes, S. Eilemann, E. Gal, M.E. Gevaert, J.P. Ghobril, A. Gidon, J.W. Graham, A. Gupta, V. Haenel, E. Hay, T. Heinis, J.B. Hernando, M. Hines, L. Kanari, D. Keller, J. Kenyon, G. Khazen, Y. Kim, J.G. King, Z. Kisvarday, P. Kumbhar, S. Lasserre, J.V. Le Bé, B.R. Magalhães, A. Merchán-Pérez, J. Meystre, B.R. Morrice, J. Muller, A. Muñoz-Céspedes, S. Muralidhar, K. Muthurasa, D. Nachbaur, T.H. Newton, M. Nolte, A. Ovcharenko, J. Palacios, L. Pastor, R. Perin, R. Ranjan, I. Riachi, J.R. Rodríguez, J.L. Riquelme, C. Rössert, K. Sfyrakis, Y. Shi, J.C. Shillcock, G. Silberberg, R. Silva, F. Tauheed, M. Telefont, M. Toledo-Rodriguez, T. Tränkler, W. Van Geit, J.V. Díaz, R. Walker, Y. Wang, S.M. Zaninetta, J. DeFelipe, S.L. Hill, I. Segev, F. Schürmann, Reconstruction and simulation of neocortical microcircuitry. Cell 163(2), 456–492 (2015)

    Article  Google Scholar 

  59. R.G. Boothe, Perception of the Visual Environmen. Psychology (Springer Science & Business Media, 2001), 408 pages. ISBN: 978-0-387-98790-3 (Print) 978-0-387-21650-8 (Online)

    Google Scholar 

  60. A.P. Sampath, F. Rieke, Selective transmission of single photon responses by saturation at the rod-to-rod bipolar synapse. Neuron 41(3), 431–443 (2004)

    Article  Google Scholar 

  61. D. Attwell, S. Borges, S.M. Wu, M. Wilson, Signal clipping by the rod output synapse. Nature 328(6130), 522–524 (1987)

    Article  ADS  Google Scholar 

  62. S. Barnes, V. Merchant, F. Mahmud, Modulation of transmission gain by protons at the photoreceptor output synapse. Proc. Natl. Acad. Sci. U.S.A. 90(21), 10081–10085 (1993)

    Article  ADS  Google Scholar 

  63. A.J. Mercer, W.B. Thoreson, The dynamic architecture of photoreceptor ribbon synapses: cytoskeletal, extracellular matrix, and intramembrane proteins. Vis. Neurosci. 28(6), 453–471 (2011)

    Article  Google Scholar 

  64. A. Bharioke, D.B. Chklovskii, Automatic adaptation to fast input changes in a time-invariant neural circuit. PLoS Comput. Biol. 11(8), e1004315 (2015). https://doi.org/10.1371/journal.pcbi.1004315

    Article  ADS  Google Scholar 

  65. S.P. Langley, The bolometer and radiant energy, in Proceedings of the American Academy of Arts and Science, vol. 16 (American Academy of Arts & Sciences, May 1880–Jun 1881), pp. 342–358. https://doi.org/10.2307/25138616, http://www.jstor.org/stable/25138616

    Article  Google Scholar 

  66. J. von Kries, J.A.E. Eyster, Über die zur Erregung des Sehorgans efforderlichen Energiemenzen. Z. Sinnesphysiol. 41, 373–394 (1907)

    Google Scholar 

  67. A. Verkhratsky, O.A. Krishtal, O.H. Petersen, From Galvani to patch clamp: the development of electrophysiology. Pflugers Arch. 453(3), 233–247 (2006)

    Article  Google Scholar 

  68. T. Tomita, A. Funaishi, Studies on intraretinal action potential with low-resistance microelectrode. J. Neurophysiol. 15(1), 75–84 (1952)

    Article  Google Scholar 

  69. G.S. Brindley, Responses to illumination recorded by microelectrodes from the frog’s retina. J. Physiol. 134(2), 360–384 (1956)

    Article  MathSciNet  Google Scholar 

  70. A.L. Byzov, Functional properties of different cells in the retina of cold-blooded vertebrates. Cold Spring Harb. Symp. Quant. Biol. 30, 547–558 (1965)

    Article  Google Scholar 

  71. S.R. Grabowski, L.H. Pinto, W.L. Pak, Adaptation in retinal rods of axolotl: intracellular recordings. Science 176(4040), 1240–1243 (1972)

    Article  ADS  Google Scholar 

  72. R.D. Penn, W.A. Hagins, Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223(5202), 201–204 (1969)

    Article  ADS  Google Scholar 

  73. D.A. Baylor, T.D. Lamb, K.W. Yau, The membrane current of single rod outer segments. J. Physiol. 288, 589–611 (1979)

    Google Scholar 

  74. D.A. Baylor, T.D. Lamb, K.W. Yau, Responses of retinal rods to single photons. J. Physiol. 288, 613–634 (1979)

    Google Scholar 

  75. R.B. Barnes, M. Czerny, Läßt sich ein Schroteffekt der Photonen mit dem Auge beobachten? Zeitschrift für Physik 79(7), 436–449 (1932)

    Article  ADS  Google Scholar 

  76. S. Hecht, S. Shlaer, M.H. Pirenne, Energy, quanta, and vision. J. Gen. Physiol. 25(6), 819–840 (1942)

    Article  Google Scholar 

  77. E. Brumberg, S. Vavilov, Visuelle Messungen der statistischen Photonenschwankungen. Bull. Acad. Sci. U.R.S.S. 7, 919–941 (1933)

    Google Scholar 

  78. E.M. Brumberg, S.I. Vavilov, Z.M. Sverdlov, Visual measurements of quantum fluctuations. I. The threshold of vision as compared with the results of fluctuation measurements. J. Phys. 7(1), 1–8 (1943)

    Google Scholar 

  79. S.I. Vavilov, T.V. Timofeeva, Visual measurements of quantum fluctuations. II. Fluctuations when the eye is light-adapted. J. Phys. 7(1), 9–11 (1943)

    Google Scholar 

  80. S.I. Vavilov, T.V. Timofeeva, Visual measurements of quantum fluctuations. III. The dependence of the visual fluctuations on the wave-length. J. Phys. 7(1), 12–17 (1943)

    Google Scholar 

  81. S.I. Vavilov, The Microstructure of Light (Academy of Sciences, Moscow, 1950), p. 198. (in Russian)

    Google Scholar 

  82. S. Hecht, S. Shlaer, M.H. Pirenne, Energy at the threshold of vision. Science 93(2425), 585–587 (1941)

    Article  ADS  Google Scholar 

  83. R. Gunter, The absolute threshold for vision in the cat. J. Physiol. 114(1–2), 8–15 (1951)

    Article  Google Scholar 

  84. S. Hecht, M.H. Pirenne, The sensibility of the nocturnal long-eared owl in the spectrum. J. Gen. Physiol. 23(6), 709–717 (1940)

    Article  Google Scholar 

  85. M.C. Teich, P.R. Prucnal, G. Vannucci, M.E. Breton, W.J. McGill, Multiplication noise in the human visual system at threshold: 1. Quantum fluctuations and minimum detectable energy. J. Opt. Soc. Am. 72, 419–431 (1982)

    Article  ADS  Google Scholar 

  86. P.R. Prucnal, M.C. Teich, Multiplication noise in the human visual system at threshold: 2. Probit estimation of parameters. Biol. Cybern. 43, 87–96 (1982)

    Article  Google Scholar 

  87. M.C. Teich, P.R. Prucnal, G. Vannucci, M.E. Breton, W.J. McGill, Multiplication noise in the human visual system at threshold: 3. The role of non-poisson quantum fluctuations. Biol. Cybern. 44, 157–165 (1982)

    Article  Google Scholar 

  88. K.W. Yau, T.D. Lamb, D.A. Baylor, Light-induced fluctuations in membrane current of single toad rod outer segments. Nature 269(5623), 78–80 (1977)

    Article  ADS  Google Scholar 

  89. P.B. Detwiler, J.D. Conner, R.D. Bodoia, Gigaseal patch clamp recordings from outer segments of intact retinal rods. Nature 300(5887), 59–61 (1982)

    Article  ADS  Google Scholar 

  90. R.D. Bodoia, P.B. Detwiler, Patch-clamp recordings of the light-sensitive dark noise in retinal rods from the lizard and frog. J. Physiol. 367, 183–216 (1985)

    Article  Google Scholar 

  91. J. Toyoda, H. Hashimoto, H. Anno, T. Tomita, The rod response in the frog and studies by intracellular recording. Vis. Res. 10(11), 1093–1100 (1970)

    Article  Google Scholar 

  92. T. Tomita, Electrical activity of vertebrate photoreceptors. Q. Rev. Biophys. 3(2), 179–222 (1970)

    Article  Google Scholar 

  93. J.E. Brown, L.H. Pinto, Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus. J. Physiol. 236(3), 575–591 (1974)

    Article  Google Scholar 

  94. R.R. Birge, R.B. Barlow, On the molecular origins of thermal noise in vertebrate and invertebrate photoreceptors. Biophys. Chem. 55, 115–126 (1995)

    Article  Google Scholar 

  95. N.M. Phan, M.F. Cheng, D.A. Bessarab, L.A. Krivitsky, Interaction of fixed number of photons with retinal rod cells. Phys. Rev. Lett. 112, 213601 (2014)

    Article  ADS  Google Scholar 

  96. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, England, 1995)

    Book  Google Scholar 

  97. F.T. Arecchi, Measurement of the statistical distribution of Gaussian and laser sources. Phys. Rev. Lett. 15, 912 (1965)

    Article  ADS  Google Scholar 

  98. D.N. Klyshko, Physical Foundations of Quantum Electronics (World Scientific, Singapore, 2011)

    MATH  Google Scholar 

  99. N. Sim, D. Bessarab, C.M. Jones, L. Krivitsky, Method of targeted delivery of laser beam to isolated retinal rods by fiber optics. Biomed. Opt. Express 2, 2926–2933 (2011)

    Article  Google Scholar 

  100. A.A. Malygin, A.N. Penin, A.V. Sergienko, Absolute calibration of the sensitivity of photodetectors using a biphotonic field. Sov. Phys. JETP Lett. 33, 477–481 (1981)

    Google Scholar 

  101. H. Mutoh, W. Akemann, T. Knöpfel, Genetically engineered fluorescent voltage reporters. ACS Chem. Neurosci. 3, 585–592 (2012)

    Article  Google Scholar 

  102. K.D. Piatkevich, F.V. Subach, V.V. Verkhusha, Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 42(8), 3441–3452 (2013)

    Article  Google Scholar 

  103. T. Tolmachova, O.E. Tolmachov, A.R. Barnard, S.R. de Silva, D.M. Lipinski, N.J. Walker, R.E. Maclaren, M.C. Seabra, Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J. Mol. Med. (Berl) 91(7), 825–837 (2013)

    Article  Google Scholar 

  104. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, Waveguide-based OPO source of entangled photon pairs. New J. Phys. 11, 113042 (2009)

    Article  ADS  Google Scholar 

  105. V. Volkov, Discovering electrophysiology in photobiology: a brief overview of several photobiological processes with an emphasis on electrophysiology. Commun. Integr. Biol. 7, e28423 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Krivitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krivitsky, L., Volkov, V. (2019). The Role of Photon Statistics in Visual Perception. In: Boyd, R., Lukishova, S., Zadkov, V. (eds) Quantum Photonics: Pioneering Advances and Emerging Applications. Springer Series in Optical Sciences, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-98402-5_6

Download citation

Publish with us

Policies and ethics