Skip to main content

Time-Multiplexed Methods for Optical Quantum Information Processing

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 217))

Abstract

Quantum information processing with photons can be greatly enhanced by incorporating time-multiplexing methods. Not only can time-bin encoding be very useful in its own right, multiplexing techniques can lead to more efficient single- and multi-photon sources, improved detectors, and high-bandwidth quantum memories, as well as enhanced applications such as quantum random walks and entanglement swapping. Here we present an overview of some of the methods used and the results achievable when explicitly using the time degree of freedom of photons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Indistinguishability of sequentially generated photons from a single semiconductor quantum dot has been reported [11,12,13,14].

  2. 2.

    A similar technique based on “spatial” multiplexing has also been proposed [28,29,30,31,32], but this is much more resource intensive: a spatial-multiplexed source analogous to the time-multiplexed source described here would need \(\sim \)30 photon pair sources (either using independent crystals or by extracting multiple photon-pair sources from a single crystal), low-loss binary (2 to 1) switchyard elements, and detectors.

  3. 3.

    The difference comes from the photon-number statistics of SPDC sources. For a source generating heralded photons in mixed states, the photon number distribution follows Poissonian statistics, whereas one generating pure states exhibits statistics associated with a thermal distribution [44].

  4. 4.

    Note that the non-multiplexed single-photon probability can actually be lower for pure heralded single-photon sources than for ones generating mixed states (see Table 5.1) because of their different photon-number statistics, i.e., thermal for a single-mode SPDC source versus Poissonian for multimode states [44]; multiplexing is consequently even more important to suppress unwanted multiple-photon events.

  5. 5.

    Finding a computational application is challenging given the sampling aspect—if the device yields a different outcome each time it runs, how does the outcome answer a well-defined question, and how could one map it to a problem of interest?

  6. 6.

    If the initial periodic source frequency is too low, one can incorporate an optical “compressor” to reduce the interval between photons. For example, the scheme in Fig. 5.5b can convert a stream of single photons at a rate of 1/\(\upmu \)s into a burst of \(n = 8\) photons spaced by \(6 \mathrm {\ ns}\). This is achieved by adjusting the round-trip time from PBS1 through the Herriot cell back to PBS1 to a time which is \(6\mathrm {\ ns}\) less than the original repetition rate of the single-photon source. Thus, each time a new photon enters there will be photons leading this with a spacing of \(6\mathrm {\ ns}\). The Pockels cell in this setup should operate at the source repetition rate to switch each new photon into the loop. Finally, after 8 round trips the Pockels cell will be activated to emit all stored photons through PBS2.

  7. 7.

    One potential disadvantage for time-bin encoding when using a free-space communication channel is that the unbalanced interferometers used to analyze the states are usually only reliable for a single spatial mode, i.e., multiple spatial modes will each have a different path length imbalance, degrading the overall system performance unless one accepts the loss of single-mode filtering; however, by including “4f”-imaging optics in both arms—essentially imaging the first beamsplitter onto the second—one can achieve a path imbalance that is independent of the incident beam tilt [80]. We have realized such a system, and demonstrated multi-mode visibilities above 93%, for input tilt angles up to 150 \(\upmu \)rad.

References

  1. T. Pittman, It’s a good time for time-bin qubits. Physics 6, 110 (2013)

    Article  Google Scholar 

  2. T.M. Graham, J.T. Barreiro, M. Mohseni, P.G. Kwiat, Hyperentanglement-enabled direct characterization of quantum dynamics. Phys. Rev. Lett. 110, 060404 (2013)

    Article  ADS  Google Scholar 

  3. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)

    Article  ADS  Google Scholar 

  4. J. McKeever, A. Boca, A.D. Boozer, R. Miller, J.R. Buck, Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    Article  ADS  Google Scholar 

  5. M. Hijlkema, B. Weber, H.P. Specht et al., A single-photon server with just one atom. Nat. Phys. 3, 253–255 (2007)

    Article  Google Scholar 

  6. M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    Article  ADS  Google Scholar 

  7. P. Michler, A. Kiraz, C. Becher et al., A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  ADS  Google Scholar 

  8. A.J. Bennett, D.C. Unitt, P. Atkinson et al., High performance single photon sources from photolithographically defined pillar microcavities. Opt. Express 13, 50–55 (2005)

    Article  ADS  Google Scholar 

  9. A. Beveratos, R. Brouri, T. Gacoin et al., Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)

    Article  ADS  Google Scholar 

  10. N. Mizuochi, T. Makino, H. Kato et al., Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012)

    Article  ADS  Google Scholar 

  11. C. Santori, D. Fattal, J. Vu\(\breve{\rm c}\)ković et al., Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  ADS  Google Scholar 

  12. Y.-J. Wei, Y.-M. He, M.-C. Chen et al., Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett. 14, 6515–6519 (2014)

    Article  ADS  Google Scholar 

  13. A.K. Nowak, S.L. Portalupi, V. Giesz et al., Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014)

    Article  Google Scholar 

  14. X. Ding, Y. He, Z.-C. Duan et al., On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016)

    Article  ADS  Google Scholar 

  15. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  16. J.-W. Pan, Z.-B. Chen, C.-Y. Lu et al., Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)

    Article  ADS  Google Scholar 

  17. C.K. Hong, L. Mandel, Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58–60 (1986)

    Article  ADS  Google Scholar 

  18. B.G. Christensen, K.T. McCusker, J.B. Altepeter et al., Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)

    Article  ADS  Google Scholar 

  19. M.D.C. Pereira, F.E.B. Becerra, B.L. Glebov et al., Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion. Opt. Lett. 38, 1609 (2013)

    Article  ADS  Google Scholar 

  20. M. Giustina, A. Mech, S. Ramelow et al., Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)

    Article  ADS  Google Scholar 

  21. P.J. Mosley, J.S. Lundeen, B.J. Smith, I.A. Walmsley, Conditional preparation of single photons using parametric downconversion: a recipe for purity. New J. Phys. 10, 093011 (2008)

    Article  ADS  Google Scholar 

  22. P.G. Evans, R.S. Bennink, W.P. Grice et al., Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission. Phys. Rev. Lett. 105, 253601 (2010)

    Article  ADS  Google Scholar 

  23. J.B. Spring, P.S. Salter, B.J. Metcalf et al., On-chip low loss heralded source of pure single photons. Opt. Express 21, 13522–13532 (2013)

    Article  ADS  Google Scholar 

  24. R. Krischek, W. Wieczorek, A. Ozawa et al., Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments. Nat. Photonics 4, 170–173 (2010)

    Article  ADS  Google Scholar 

  25. Y.-F. Huang, B.-H. Liu, L. Peng et al., Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. Nat. Commun. 2, 546 (2011)

    Article  Google Scholar 

  26. X.-C. Yao, T.-X. Wang, P. Xu et al., Observation of eight-photon entanglement. Nat. Photonics 6, 225–228 (2012)

    Article  ADS  Google Scholar 

  27. F. Kaneda, P.G. Kwiat, High-efficiency single-photon generation via large-scale active time multiplexing. arxiv:1803.04801v1 (2018)

  28. A.L. Migdall, D. Branning, S. Castelletto, Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002)

    Article  ADS  Google Scholar 

  29. X. Ma, S. Zotter, J. Kofler et al., Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011)

    Article  ADS  Google Scholar 

  30. M.J. Collins, C. Xiong, I.H. Rey et al., Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4, 2582 (2013)

    Article  Google Scholar 

  31. R.J.A. Francis-Jones, P.J. Mosley, Exploring the limits of multiplexed photon-pair sources for the preparation of pure single-photon states. arXiv:1409.1394 (2014)

  32. D. Bonneau, G.J. Mendoza, J.L. O’Brien, M.G. Thompson, Effect of loss on multiplexed single-photon sources. New J. Phys. 17, 043057 (2015)

    Article  ADS  Google Scholar 

  33. T. Pittman, B. Jacobs, J. Franson, Single photons on psudodemand from stored parametric down-conversion. Phys. Rev. A 66, 042303 (2002)

    Article  ADS  Google Scholar 

  34. E. Jeffrey, N.A. Peters, P.G. Kwiat, Towards a periodic deterministic source of arbitrary single-photon states. New J. Phys. 6, 100 (2004)

    Article  ADS  Google Scholar 

  35. K. McCusker, P.G. Kwiat, Efficient optical quantum state engineering. Phys. Rev. Lett. 103, 163602 (2009)

    Article  ADS  Google Scholar 

  36. B. Glebov, J. Fan, A. Migdall, Deterministic generation of single photons via multiplexing repetitive parametric downconversions. Appl. Phys. Lett. 103, 031115 (2013)

    Article  ADS  Google Scholar 

  37. J. Mower, D. Englund, Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 84, 052326 (2011)

    Article  ADS  Google Scholar 

  38. G.J. Mendoza, R. Santagati, J. Munns et al., Active temporal multiplexing of photons. Optica. 3, 127–132 (2016)

    Article  Google Scholar 

  39. C.T. Schmiegelow, M.A. Larotonda, Multiplexing photons with a binary division strategry. Appl. Phys. B 74, 902 (2013)

    Google Scholar 

  40. F. Kaneda, B.G. Christensen, J.J. Wong et al., Time-multiplexed heralded single-photon source. Optica 2, 1010–1013 (2015)

    Article  Google Scholar 

  41. K.T. McCusker, Efficient quantum optical state engineering and applications. Ph.D. thesis (University of Illinois at Urbana-Champaign, 2012)

    Google Scholar 

  42. A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photonics 3, 706–714 (2009)

    Article  ADS  Google Scholar 

  43. C. Robert, Simple, stable, and compact multiple-reflection optical cell for very long optical paths. Appl. Opt. 46, 5408–5418 (2007)

    Article  ADS  Google Scholar 

  44. A. Christ, K. Laiho, A. Eckstein et al., Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011)

    Article  ADS  Google Scholar 

  45. R. Loudon, The Quantum Theory of Light, vol. 3, (Oxford University Press, 2000)

    Google Scholar 

  46. C.R. Myers, R. Laflamme, Linear optics quantum computation: an overview. arXiv:0512104 (2005)

  47. M.A. Nielsen, Cluster-state quantum computation. Rep. Math. Phys. 47, 147–161 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. P. Kok, S.L. Braunstein, J.P. Dowling, Quantum lithography, entanglement and Heisenberg-limited parameter estimation. J. Opt. B 13, 033027 (2011)

    Google Scholar 

  49. P.C. Humphreys, B.J. Metcalf, J.B. Spring et al., Linear optical quantum computing in a single spatial mode. Phys. Rev. Lett. 111, 150501 (2013)

    Article  ADS  Google Scholar 

  50. S. Aaronson, A. Arkhipov, The computation complexity of linear optics, in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (2011), pp. 333–342

    Google Scholar 

  51. L. Valiant, The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  52. J.P. Buhler, H.W. Lenstra Jr., C. Pomerance, Factoring integers with the number field sieve, in The Development of the Number Field Sieve (1993), pp. 50–94

    Google Scholar 

  53. M.A. Broome, A. Fedrizzi, S. Rahimi-Keshari et al., Photonic Boson sampling in a tunable circuit. Science 339, 794–798 (2013)

    Article  ADS  Google Scholar 

  54. J.B. Spring, B.J. Metcalf, P.C. Humphreys et al., Boson sampling on a photonic chip. Science 339, 798–801 (2013)

    Article  ADS  Google Scholar 

  55. M. Tillmann, B. Dakić, R. Heilmann et al., Experimental Boson sampling. Nat. Photonics 7, 540–544 (2013)

    Article  ADS  Google Scholar 

  56. N. Spagnolo, C. Vitelli, M. Bentivegna et al., Experimental validation of photonic Boson sampling. Nat. Photonics 8, 615–620 (2014)

    Article  ADS  Google Scholar 

  57. M. Bentivegna, N. Spagnolo, C. Vitelli et al., Experimental scattershot Boson sampling. Sci. Adv. 1, e1400255 (2015)

    Article  ADS  Google Scholar 

  58. A. Dantan, J. Ciklinski, M. Pinard, Ph Grangier, Dynamics of a pulsed continuous-variable quantum memory. Phys. Rev. A 73, 032338 (2006)

    Article  ADS  Google Scholar 

  59. J. Jin, E. Saglamyurek, M. Ií, G. Puigibert et al., Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits. Phys. Rev. Lett. 115, 140501 (2015)

    Article  ADS  Google Scholar 

  60. J. Appel, E. Figueroa, D. Korystove et al., Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008)

    Article  ADS  Google Scholar 

  61. M. Gündoğan, P.M. Ledingham, K. Kutluer et al., Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501 (2015)

    Article  ADS  Google Scholar 

  62. V. Parigi, V. D’Ambrosio, C. Arnold et al., Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun. 6, 7706 (2015)

    Article  Google Scholar 

  63. A. Sennaroglu, J. Fujimoto, Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers. Opt. Express 11, 1106–1113 (2003)

    Article  ADS  Google Scholar 

  64. G.G. Ball, W.H. Glenn, W.W. Morey, Programmable fiber optic delay line. IEEE Photonics Technol. Lett. 6, 741–743 (1994)

    Article  ADS  Google Scholar 

  65. E. Saglamyurek, A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 8, 234–238 (2014)

    Article  Google Scholar 

  66. Y. Soudagar, F. Bussiéres, G. Berlin, S. Lacroix, J. Fernandez, Cluster-state quantum computing in optical fibers. J. Opt. Soc. Am. B 24, 226–230 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  67. J. Altepeter, E. Jeffrey, P. Kwiat, Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005)

    Article  ADS  Google Scholar 

  68. D.V. James, P. Kwiat, W. Munro, A. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  69. A. Tiranov et al., Storage of hyperentanglement in a solid-state quantum memory. Optica 2, 287–297 (2015)

    Article  Google Scholar 

  70. K. Makino, Y. Hashimoto, J.-I. Yoshikawa, H. Ohdan, T. Toyama, P. vanLoock, A. Furusawa, Synchronization of optical photons for quantum information processing. Sci. Adv. 2, e150177 (2016)

    Article  ADS  Google Scholar 

  71. J.-I. Yoshikawa, K. Makino, S. Kurata et al., Creation, storage, and on-demand release of optical quantum states with a negative wigner function. Phys. Rev. X 3, 041028 (2013)

    Google Scholar 

  72. M.J. Fitch, B.C. Jacobs, T.B. Pittman, J.D. Franson, Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A 68, 043814 (2003)

    Article  ADS  Google Scholar 

  73. D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, I.A. Walmsley, Fiber-assisted detection with photon number resolution. Opt. Lett. 28, 2387–2389 (2003)

    Article  ADS  Google Scholar 

  74. J. Brendel, N. Gisin, W. Tittel, H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999)

    Article  ADS  Google Scholar 

  75. H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G.S. Solomon, G. Weihs, Time-bin entangled photons from a quantum dot. Nat. Commun. 5, 4251 (2014)

    Article  ADS  Google Scholar 

  76. M.A.M. Versteegh, M.E. Reimer, A.A. vanden Berg et al., Single pairs of time-bin-entangled photons. Phys. Rev. A 92, 033802 (2015)

    Article  ADS  Google Scholar 

  77. S. Etcheverry, G. Cañas, E.S. Gómez et al., Quantum key distribution session with 16-dimensional photonic states. Sci. Rep. 3, 02316 (2013)

    Article  Google Scholar 

  78. M. Malik, M. O’Sullivan, B. Rodenburg et al., Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Exp. 20, 13195–13200 (2012)

    Article  ADS  Google Scholar 

  79. M. Mafu, A. Dudley, S. Goyal et al., Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)

    Article  ADS  Google Scholar 

  80. J. Jin, S. Agne, J. -P. Bourgoin, Y. Zhang, T. Jennewein et al., Demonstration of analyzers for multimode photonic time-bin qubits. Phys. Rev. A97, 043847 (2018)

    Google Scholar 

  81. B. Christensen, K. McCusker, D. Gauthier, D. Kumor, V. Chandar, P. Kwiat, Higher-dimensional quantum cryptography. OSA Tech. Dig. 3, 2316 (2013)

    Google Scholar 

  82. T. Zhong, H. Zhou, R.D. Horansky et al., Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding. New J. Phys. 17, 022002 (2015)

    Article  ADS  Google Scholar 

  83. D. Bunandar, Z. Zhang, J. Shapiro, D. Englund, Practical high-dimensional quantum key distribution with decoy states. Phys. Rev. A 91, 022336 (2015)

    Article  ADS  Google Scholar 

  84. T. Brougham, S. Barnett, K. McCusker, P.G. Kwiat, D. Gauthier, Security of high-dimensional quantum key distribution protocols using Franson interferometers. J. Phys. B: At. Mol. Opt. Phys. 46, 104010 (2013)

    Article  ADS  Google Scholar 

  85. T. Brougham, S. Barnett, Mutually unbiased measurements for high-dimensional time-bin-based photonic states. EPL 104, 30003 (2013)

    Article  ADS  Google Scholar 

  86. Z. Zhang, J. Mower, D. Englund, F. Wong, J. Shapiro, Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. Phys. Rev. Lett. 112, 12 (2014)

    Google Scholar 

  87. D. Simon, A. Sergienko, High-capacity quantum key distribution via hyperentangled degrees of freedom. New J. Phys. 16, 063052 (2014)

    Article  ADS  Google Scholar 

  88. T. Zhong, Photon-efficient quantum cryptography with pulse-position modulation. New J. Phys. 16, 063052 (2014)

    Article  Google Scholar 

  89. Y. Noguchi, H. Takesue, Implementation of quantum state tomography for time-bin entangled photon pairs. Opt. Exp. 17, 10976–10989 (2009)

    Article  Google Scholar 

  90. K.M. Rosfjord, J.K.W. Yang, E.A. Dauler et al., Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Exp. 14, 527–534 (2006)

    Article  ADS  Google Scholar 

  91. J.M. Donohue, M. Agnew, J. Lavoie, K.J. Resch, Coherent ultrafast measurement of time-bin encoded photons. Phys. Rev. Lett. 111, 153602 (2013)

    Article  ADS  Google Scholar 

  92. F. Bussieres, Y. Soudagar, G. Berlin, S. Lacroix, N. Godbout, Manipulating time-bin qubits with fiber optics components, in 2006 Digest of the LEOS Summer Topical Meetings (2006), pp. 22–23

    Google Scholar 

  93. A. Schreiber, K.N. Cassemiro, V. Poto\(\breve{\rm c}\)ek et al., Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 00502 (2010)

    Google Scholar 

  94. M. Szegedy, Quantum speed-up of Markov chain based algorithms, in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (2004), pp. 32–41

    Google Scholar 

  95. A. Childs, Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2008)

    Article  MathSciNet  Google Scholar 

  96. A. Peruzzo et al., Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Article  ADS  Google Scholar 

  97. J.O. Owens, M.A. Broome, D.N. Biggerstaff et al., Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)

    Article  ADS  Google Scholar 

  98. A. Schreiber, A.G abris, P.P. Rohde et al., A 2D quantum walk simulation of two-particle dynamics. Sci. Mag. 336, 55–58 (2012)

    Article  ADS  Google Scholar 

  99. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  100. M. Horodecki, M. Piani, On quantum advantage in dense coding. J. Phys. A 45, 105305 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. T. Das, R. Prabhu, A. Sen(De), U. Sen, Distributed quantum dense coding with two receivers in noisy environments. Phys. Rev. A 92, 052330 (2015)

    Article  ADS  Google Scholar 

  103. H. Buhrman, R. Cleve, J. Watrous, R. de Wolf, Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  104. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibel, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  105. K. Azuma, K. Tamaki, H.-K. Lo, All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015)

    Google Scholar 

  106. T. Li, F. -G. Deng, Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission. Sci. Rep. 5, 15610 (2015)

    Google Scholar 

  107. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)

    Article  ADS  Google Scholar 

  108. H.-J. Briegel, W. Dür, J.I. Ciract, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  109. M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, “Event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  110. J.-W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, H.S. Eisenberg, Entanglement swapping between Photons that have never coexisted. Phys. Rev. Lett. 110, 210403 (2013)

    Article  ADS  Google Scholar 

  112. A.M. Goebel, C. Wagenknecht, Q. Zhang et al., Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michelle Victora or Paul Kwiat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Victora, M., Kaneda, F., Bergmann, F., Wong, J.J., Graf, A., Kwiat, P. (2019). Time-Multiplexed Methods for Optical Quantum Information Processing. In: Boyd, R., Lukishova, S., Zadkov, V. (eds) Quantum Photonics: Pioneering Advances and Emerging Applications. Springer Series in Optical Sciences, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-98402-5_5

Download citation

Publish with us

Policies and ethics