Skip to main content

Nonlinear Interactions and Non-classical Light

  • Chapter
  • First Online:
Book cover Quantum Photonics: Pioneering Advances and Emerging Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 217))

Abstract

The term non-classical concerns light whose properties cannot be explained by classical electrodynamics and which requires invoking quantum principles to be understood. Its existence is a direct consequence of field quantization; its study is a source of our understanding of many quantum phenomena. Non-classical light also has properties that may be of technological significance. We start this chapter by discussing the definition of non-classical light and basic examples. Then some of the most prominent applications of non-classical light are reviewed. After that, as the principal part of our discourse, we review the most common sources of non-classical light. We will find them surprisingly diverse, including physical systems of various sizes and complexity, ranging from single atoms to optical crystals and to semiconductor lasers. Putting all these dissimilar optical devices in the common perspective we attempt to establish a trend in the field and to foresee the new cross-disciplinary approaches and techniques of generating non-classical light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, it is often convenient to measure autocorrelation function (3.1) using a beam splitter and a pair of detectors. The same or similar set up can be used for measuring a cross-correlation function of two optical modes. Note that this measurement yields a different observable whose classical range is \(g_{12}^{(2)}(0) > 0.5\) [8].

  2. 2.

    The cat states, named after Schrödinger’s cat, are superpositions of two out-of-phase macroscopic (\(|\alpha |\gg 1\)) coherent states, e.g. \(|\varPsi \rangle _{\mathrm{cat}}\propto |\alpha \rangle +|-\alpha \rangle \).

  3. 3.

    We use a notation where a vertical or horizontal arrow represents one of the two orthogonal linear polarizations, and subscripts A and B one of the two spatial modes. Hence we work in four-dimensional Hilbert space where single-photon base states can be mapped as follows: \(|\updownarrow \rangle _{A}\longrightarrow |1,0,0,0\rangle \), \(|\leftrightarrow \rangle _{A}\longrightarrow |0,1,0,0\rangle \), \(|\updownarrow \rangle _{B}\longrightarrow |0,0,1,0\rangle \), \(|\leftrightarrow \rangle _{B}\longrightarrow |0,0,0,1\rangle \).

  4. 4.

    We recall that spectral brightness, determining the mean number of photons per mode, in free space is measured in terms of light intensity emitted into a unity solid angle per unity frequency bandwidth.

References

  1. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000)

    Google Scholar 

  2. D.N. Klyshko, Basic quantum mechanical concepts from the operational viewpoint. Phys.-Uspekhi 41, 885–922 (1998)

    Article  ADS  Google Scholar 

  3. D.F. Walls, Evidence for the quantum nature of light. Nature 280, 451–454 (1979)

    Article  ADS  Google Scholar 

  4. H. Paul, Photon antibunching. Rev. Mod. Phys. 54, 1061–1102 (1982)

    Article  ADS  Google Scholar 

  5. G. Leuchs, Photon statistics, antibunching and squeezed states, in Frontiers of Nonequilibrium Statistical Physics, ed. by G.T. Moore, M.O. Scully (Springer, US, 1986)

    Google Scholar 

  6. D.N. Klyshko, The nonclassical light. Phys.-Uspekhi 39, 573–596 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39 (1997)

    Article  ADS  Google Scholar 

  8. D.N. Klyshko, Quantum optics: quantum, classical, and metaphysical aspects. Phys.-Uspekhi 37, 1097–1123 (1994)

    Article  ADS  Google Scholar 

  9. J.S. Bell, On the einstein podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  10. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variables theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  MATH  Google Scholar 

  11. J.F. Clauser, M.A. Horne, Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  12. J.F. Clauser, A. Shimony, Bell’s theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978)

    Article  ADS  Google Scholar 

  13. N.J. Cerf, C. Adami, Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194–5197 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010)

    Google Scholar 

  15. W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH Verlag Berlin GmbH, Berlin, 2001)

    Book  MATH  Google Scholar 

  16. M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Distribution functions in physics: fundamentals. Phys. Rep. 106, 121–167 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Hillery, Total noise and nonclassical states. Phys. Rev. A 39, 2994–3002 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  18. C.T. Lee, Higher-order criteria for nonclassical effects in photon statistics. Phys. Rev. A 41, 1721–1723 (1990)

    Article  ADS  Google Scholar 

  19. D.N. Klyshko, Observable signs of nonclassical light. Phys. Lett. A 213, 7 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. B. Yurke, D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986)

    Article  ADS  Google Scholar 

  21. B. Vlastakis, G. Kirchmair, Z. Leghtas, S.E. Nigg, L. Frunzio, S.M. Girvin, M. Mirrahimi, M.H. Devoret, R.J. Schoelkopf, Deterministically encoding quantum information using 100-photon schrödinger cat states. Science 342, 607–610 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P.G. Kwiat, H. Weinfurter, Embedded bell-state analysis. Phys. Rev. A 58, R2623–R2626 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Dowling, Quantum optical metrology—the lowdown on hing-noon states. Contemp. Phys. 49, 125–143 (2008)

    Article  ADS  Google Scholar 

  24. I. Afek, O. Ambar, Y. Silberberg, High-noon states by mixing quantum and classical light. Science 328, 879–881 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Y. Zhang, T. Furuta, R. Okubo, K. Takahashi, T. Hirano, Experimental generation of broadband quadrature entanglement using laser pulses. Phys. Rev. A 76, 012314 (2007)

    Article  ADS  Google Scholar 

  26. K.-I. Yoshino, T. Aoki, A. Furusawa, Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides. Appl. Phys. Lett. 90, 041111 (2007)

    Article  ADS  Google Scholar 

  27. U.L. Andersen, G. Leuchs, C. Silberhorn, Continuous-variable quantum information processing. Las. Phot. Rev. 4, 337–354 (2010)

    Article  Google Scholar 

  28. W.P. Bowen, N. Treps, B.C. Buchler, R. Schnabel, T.C. Ralph, H.-A. Bachor, T. Symul, P.K. Lam, Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003)

    Article  ADS  Google Scholar 

  29. M.V. Chekhova, G. Leuchs, M. Żukowski, Bright squeezed vacuum: entanglement of macroscopic light beams. Opt. Commun. 337, 27–43 (2015)

    Article  ADS  Google Scholar 

  30. M.J. Collett, D.F. Walls, Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887–2892 (1985)

    Article  ADS  Google Scholar 

  31. M.D. Reid, P.D. Drummond, Quantum correlations of phase in nondegenerate parametric oscillation. Phys. Rev. Lett. 60, 2731–2733 (1988)

    Article  ADS  Google Scholar 

  32. C. Fabre, E. Giacobino, A. Heidmann, S. Reynaud, Noise characteristics of a non-degenerate optical parametric oscillator—application to quantum noise reduction. J. Phys. 50, 1209–1225 (1989)

    Article  Google Scholar 

  33. J.U. Fürst, D.V. Strekalov, D. Elser, A. Aiello, U.L. Andersen, C. Marquardt, G. Leuchs, Quantum light from a whispering-gallery-mode disk resonator. Phys. Rev. Lett. 106, 113901 (2011)

    Article  ADS  Google Scholar 

  34. B. Yurke, S.L. McCall, J.R. Klauder, Su(2) and su(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986)

    Article  ADS  Google Scholar 

  35. R.A. Campos, B.E.A. Saleh, M.C. Teich, Quantum-mechanical lossless beam splitter: Su(2) symmetry and photon statistics. Phys. Rev. A 40, 1371–1384 (1989)

    Article  ADS  Google Scholar 

  36. K.Y. Spasibko, F. Töppel, T.S. Iskhakov, M. Stobiska, M.V. Chekhova, G. Leuchs, Interference of macroscopic beams on a beam splitter: phase uncertainty converted into photon-number uncertainty. New J. Phys. 16, 013025 (2014)

    Article  ADS  Google Scholar 

  37. D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, A. Zeilinger, Experimental test of quantum nonlocality in three-photon greenberger-horne-zeilinger entanglement. Nature 403, 515–519 (2000)

    Article  ADS  MATH  Google Scholar 

  39. W. Dur, G. Vidal, J.I. Cirac, Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, H. Weinfurter, Experimental realization of a three-qubit entangled w state. Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  41. J. Wen, S. Du, M. Xiao, Improving spatial resolution in quantum imaging beyond the rayleigh diffraction limit using multiphoton w entangled states. Phys. Lett. A 374, 3908–3911 (2010)

    Article  ADS  MATH  Google Scholar 

  42. H.J. Briegel, R. Raussendorf, Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  43. M. Hein, J. Eisert, H.J. Briegel, Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. J.A. Smolin, Four-party unlockable bound entangled state. Phys. Rev. A 63, 032306 (2001)

    Article  ADS  Google Scholar 

  45. H. Bechmann-Pasquinucci, W. Tittel, Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062308 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  46. S.P. Walborn, D.S. Lemelle, M.P. Almeida, P.H.S. Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  47. P.B. Dixon, G.A. Howland, J. Schneeloch, J.C. Howell, Quantum mutual information capacity for high-dimensional entangled states. Phys. Rev. Lett. 108, 143603 (2012)

    Article  ADS  Google Scholar 

  48. W. Wasilewski, A.I. Lvovsky, K. Banaszek, C. Radzewicz, Pulsed squeezed light: simultaneous squeezing of multiple modes. Phys. Rev. A 73, 063819 (2006)

    Article  ADS  Google Scholar 

  49. D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. H.-P. Lo, C.-M. Li, A. Yabushita, Y.-N. Chen, C.-W. Luo, T. Kobayashi, Experimental violation of bell inequalities for multi-dimensional systems. Sci. Rep. 6, 22088 (2016)

    Article  ADS  Google Scholar 

  51. A.C. Dada, J. Leach, G.S. Buller, M.J. Padgett, E. Andersson, Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nat. Phys. 7, 677–680 (2011)

    Article  Google Scholar 

  52. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)

    Article  ADS  Google Scholar 

  53. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, A. Zeilinger, Generation and confirmation of a (\(100 \times 100\))-dimensional entangled quantum system. PNAS 111, 6243–6247 (2014)

    Article  ADS  Google Scholar 

  54. B.C. Hiesmayr, M.J.A. de Dood, W. Löffler, Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett. 116, 073601 (2016)

    Article  ADS  Google Scholar 

  55. M.W. Mitchell, F.A. Beduini, Extreme spin squeezing for photons. New J. Phys. 16, 073027 (2014)

    Article  ADS  Google Scholar 

  56. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  58. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  59. R. Hildebrand, Concurrence revisited. J. Math. Phys. 48, 102108–102108 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. B.Y. Zeldovich, D.N. Klyshko, Statistics of field in parametric luminescence. Sov. Phys. JETP Lett. 9, 40–44 (1969)

    ADS  Google Scholar 

  61. D.C. Burnham, D.L. Weinberg, Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970)

    Article  ADS  Google Scholar 

  62. D.N. Klyshko, Use of two-photon light for absolute calibration of photoelectric detectors. Quantum Electron. 7, 1932–1940 (1980)

    Google Scholar 

  63. S.V. Polyakov, A.L. Migdall, High accuracy verification of a correlatedphoton-based method for determining photoncounting detection efficiency. Opt. Express 15, 1390–1407 (2007)

    Article  ADS  Google Scholar 

  64. M. Ware, A. Migdall, J. Bienfang, S. Polyakov, Calibrating photon-counting detectors to high accuracy: background and deadtime issues. J. Mod. Opt. 54, 361–372 (2007)

    Article  ADS  Google Scholar 

  65. A. Czitrovszky, A. Sergienko, P. Jani, A. Nagy, Measurement of quantum efficiency using correlated photon pairs and a single-detector technique. Metrologia 37, 617–620 (2000)

    Article  ADS  Google Scholar 

  66. M.V. Lebedev, A.A. Shchekin, O.V. Misochko, Two-electron pulses of a photomultiplier and two-photon photoeffect. Quantum Electron. 38, 710–723 (2008)

    Article  ADS  Google Scholar 

  67. G. Brida, M. Genovese, I. Ruo-Berchera, M. Chekhova, A. Penin, Possibility of absolute calibration of analog detectors by using parametric downconversion: a systematic study. JOSA B 23, 2185–2193 (2006)

    Article  ADS  Google Scholar 

  68. H. Vahlbruch, M. Mehmet, K. Danzmann, R. Schnabel, Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016)

    Article  ADS  Google Scholar 

  69. G. Brida, I.P. Degiovanni, M. Genovese, M.L. Rastello, I. Ruo-Berchera, Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera. Opt. Express 18, 20572–20584 (2010)

    Article  ADS  Google Scholar 

  70. D.N. Klyshko, Photons and Nonlinear Optics (Taylor and Francis, New York, NY USA, 1988)

    Google Scholar 

  71. D.N. Klyshko, A.N. Penin, The prospects of quantum photometry. Sov. Phys. Uspekhi 30, 716–723 (1987)

    Article  ADS  Google Scholar 

  72. M. Xiao, L.-A. Wu, H.J. Kimble, Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987)

    Article  ADS  Google Scholar 

  73. P. Grangier, R.E. Slusher, B. Yurke, A. LaPorta, Squeezed-light- enhanced polarization interferometer. Phys. Rev. Lett. 59, 2153–2156 (1987)

    Article  ADS  Google Scholar 

  74. T.L.S. Collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)

    Article  Google Scholar 

  75. E.S. Polzik, J. Carri, H.J. Kimble, Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020–3023 (1992)

    Article  ADS  Google Scholar 

  76. P.H.S. Ribeiro, C. Schwob, A. Maitre, C. Fabre, Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twin beams. Opt. Lett. 22, 1893–1895 (1997)

    Article  ADS  Google Scholar 

  77. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Biological measurement beyond the quantum limit. Nat. Phot. 7, 229–233 (2013)

    Article  Google Scholar 

  78. J. Gea-Banacloche, Two-photon absorption of nonclassical light. Phys. Rev. Lett. 62, 1603–1606 (1989)

    Article  ADS  Google Scholar 

  79. J. Javanainen, P.L. Gould, Linear intensity dependence of a two-photon transition rate. Phys. Rev. A 41, 5088–5091 (1990)

    Article  ADS  Google Scholar 

  80. B. Dayan, Theory of two-photon interactions with broadband down-converted light and entangled photons. Phys. Rev. A 76, 043813 (2007)

    Article  ADS  Google Scholar 

  81. N.P. Georgiades, E.S. Polzik, K. Edamatsu, H.J. Kimble, A.S. Parkins, Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426–3429 (1995)

    Article  ADS  Google Scholar 

  82. B. Dayan, A. Pe’er, A.A. Friesem, Y. Silberberg, Two photon absorption and coherent control with broadband down-converted light. Phys. Rev. Lett. 93, 023005 (2004)

    Article  ADS  Google Scholar 

  83. F. Boitier, A. Godard, E. Rosencher, C. Fabre, Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nat. Phys. 5, 267–270 (2009)

    Article  Google Scholar 

  84. D.Y. Korystov, S.P. Kulik, A.N. Penin, Rozhdestvenski hooks in two-photon parametric light scattering. JETP Lett. 73, 214–218 (2001)

    Article  ADS  Google Scholar 

  85. A.N. Boto, P. Kok, D.S. Abrams, S.L. Braunstein, C.P. Williams, J.P. Dowling, Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)

    Article  ADS  Google Scholar 

  86. A. Pe’er, B. Dayan, M. Vucelja, Y. Silberberg, A.A. Friesem, Quantum lithography by coherent control of classical light pulses. Opt. Express 12, 6600–6605 (2004)

    Article  ADS  Google Scholar 

  87. E.M. Nagasako, S.J. Bentley, R.W. Boyd, G.S. Agarwal, Nonclassical two-photon interferometry and lithography with high-gain parametric amplifiers. Phys. Rev. A 64, 043802 (2001)

    Article  ADS  Google Scholar 

  88. B. Dayan, A. Pe’er, A.A. Friesem, Y. Silberberg, Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005)

    Article  ADS  Google Scholar 

  89. T.B. Pittman, Y.H. Shih, D.V. Strekalov, A.V. Sergienko, Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995)

    Article  ADS  Google Scholar 

  90. M.B. Nasr, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003)

    Article  ADS  Google Scholar 

  91. N. Treps, N. Grosse, W.P. Bowen, C. Fabre, H.-A. Bachor, P.K. Lam, A quantum laser pointer. Science 301, 940–943 (2003)

    Article  ADS  Google Scholar 

  92. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  93. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  94. J.F. Clauser, J.P. Dowling, Factoring integers with young’s n-slit interferometer. Phys. Rev. A 53, 4587–4590 (1996)

    Article  ADS  Google Scholar 

  95. J.D. Franson, B.C. Jacobs, T.B. Pittman, Quantum computing using single photons and the zeno effect. Phys. Rev. A 70, 062302 (2004)

    Article  ADS  Google Scholar 

  96. J.D. Franson, T.B. Pittman, B.C. Jacobs, Zeno logic gates using microcavities. JOSA B 24, 209–213 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  97. B.D. Clader, S.M. Hendrickson, R.M. Camacho, B.C. Jacobs, All-optical microdisk switch using EIT. Opt. Express 21, 6169–6179 (2013)

    Article  ADS  Google Scholar 

  98. Y.-P. Huang, J.B. Altepeter, P. Kumar, Interaction-free all-optical switching via the quantum zeno effect. Phys. Rev. A 82, 063826 (2010)

    Article  ADS  Google Scholar 

  99. Y.-P. Huang, P. Kumar, Interaction-free all-optical switching in chi\(^{(2)}\) microdisks for quantum applications. Opt. Lett. 35, 2376–2378 (2010)

    Article  ADS  Google Scholar 

  100. Y.-Z. Sun, Y.-P. Huang, P. Kumar, Photonic nonlinearities via quantum zeno blockade. Phys. Rev. Lett. 110, 223901 (2013)

    Article  ADS  Google Scholar 

  101. S.M. Hendrickson, C.N. Weiler, R.M. Camacho, P.T. Rakich, A.I. Young, M.J. Shaw, T.B. Pittman, J.D. Franson, B.C. Jacobs, All-optical-switching demonstration using two-photon absorption and the zeno effect. Phys. Rev. A 87, 23808 (2013)

    Article  ADS  Google Scholar 

  102. D.V. Strekalov, A.S. Kowligy, Y.-P. Huang, P. Kumar, Progress towards interaction-free all-optical devices. Phys. Rev. A 89, 063820 (2014)

    Article  ADS  Google Scholar 

  103. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  104. T. Aoki, A.S. Parkins, D.J. Alton, C.A. Regal, B. Dayan, E. Ostby, K.J. Vahala, H.J. Kimble, Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)

    Article  ADS  Google Scholar 

  105. H.P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, G. Rempe, A single-atom quantum memory. Nature 473, 190–193 (2011)

    Article  ADS  Google Scholar 

  106. A. Ourjoumtsev, A. Kubanek, M. Koch, C. Sames, P.W.H. Pinkse, G. Rempe, K. Murr, Observation of squeezed light from one atom excited with two photons. Nature 474, 623–626 (2011)

    Article  ADS  Google Scholar 

  107. W. Chen, K.M. Beck, R. Bücker, M. Gullans, M.D. Lukin, H. Tanji-Suzuki, V. Vuletić, All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013)

    Article  ADS  Google Scholar 

  108. S. Baur, D. Tiarks, G. Rempe, S. Dürr, Single-photon switch based on rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014)

    Article  ADS  Google Scholar 

  109. X. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, B. Dayan, All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014)

    Article  ADS  Google Scholar 

  110. T.G. Tiecke, J.D. Thompson, N.P. de Leon, L.R. Liu, V. Vuletić, M.D. Lukin, Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014)

    Article  ADS  Google Scholar 

  111. S. Rosenblum, O. Bechler, I. Shomroni, Y. Lovsky, G. Guendelman, B. Dayan, Extraction of a single photon from an optical pulse. Nat. Phot. 10, 19–22 (2016)

    Article  Google Scholar 

  112. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  ADS  Google Scholar 

  113. P.-B. Li, S.-Y. Gao, F.-L. Li, Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator. Phys. Rev. A 83, 054306 (2011)

    Article  ADS  Google Scholar 

  114. Q. Chen, W.L. Yang, M. Feng, Quantum gate operations in decoherence-free fashion with separate nitrogen-vacancy centers coupled to a whispering-gallery mode resonator. Eur. Phys. J. D 66, 238 (2012)

    Article  ADS  Google Scholar 

  115. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter, Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  116. J. Beugnon, M.P.A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, P. Grangier, Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006)

    Article  ADS  Google Scholar 

  117. P. Maunz, D.L. Moehring, S. Olmschenk, K.C. Younge, D.N. Matsukevich, C. Monroe, Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3, 538–541 (2007)

    Article  Google Scholar 

  118. V. Leong, S. Kosen, B. Srivathsan, G.K. Gulati, A. Cerè, C. Kurtsiefer, Hong-ou-mandel interference between triggered and heralded single photons from separate atomic systems. Phys. Rev. A 91, 063829 (2015)

    Article  ADS  Google Scholar 

  119. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, J.-W. Pan, Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys. Rev. Lett. 101, 190501 (2008)

    Article  ADS  Google Scholar 

  120. J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett. 110 (2013)

    Google Scholar 

  121. G. Schunk, U. Vogl, D.V. Strekalov, M. Förtsch, F. Sedlmeir, H.G.L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, C. Marquardt, Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source. Optica 2, 773–778 (2015)

    Article  Google Scholar 

  122. A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, J. Eschner, Telecom-heralded single-photon absorption by a single atom. Phys. Rev. A 92, 063827 (2015)

    Article  ADS  Google Scholar 

  123. G. Schunk, U. Vogl, F. Sedlmeir, D.V. Strekalov, A. Otterpohl, V. Averchenko, H.G.L. Schwefel, G. Leuchs, C. Marquardt, Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions. J. Mod. Opt. 63, 2058–2073 (2016)

    Article  ADS  Google Scholar 

  124. M. Förtsch, G. Schunk, J.U. Fürst, D. Strekalov, T. Gerrits, M.J. Stevens, F. Sedlmeir, H.G.L. Schwefel, S.W. Nam, G. Leuchs, C. Marquardt, Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source. Phys. Rev. A 91, 023812 (2015)

    Article  ADS  Google Scholar 

  125. K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, Direct generation of genuine single-longitudinal-mode narrowband photon pairs. New J. Phys. 17, 073039 (2015)

    Article  ADS  Google Scholar 

  126. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  127. Y.I. Bogdanov, M.V. Chekhova, L.A. Krivitsky, S.P. Kulik, A.N. Penin, A.A. Zhukov, L.C. Kwek, C.H. Oh, M.K. Tey, Statistical reconstruction of qutrits. Phys. Rev. A 70, 042303 (2004)

    Article  ADS  Google Scholar 

  128. B.P. Lanyon, T.J. Weinhold, N.K. Langford, J.L. O’Brien, K.J. Resch, A. Gilchrist, A.G. White, Manipulating biphotonic qutrits. Phys. Rev. Lett. 100, 060504 (2008)

    Article  ADS  Google Scholar 

  129. Y.I. Bogdanov, E.V. Moreva, G.A. Maslennikov, R.F. Galeev, S.S. Straupe, S.P. Kulik, Polarization states of four-dimensional systems based on biphotons. Phys. Rev. A 73, 063810 (2006)

    Article  ADS  Google Scholar 

  130. M.-X. Luo, Y. Deng, H.-R. Li, S.-Y. Ma, Photonic ququart logic assisted by the cavity-qed system. Sci. Rep. 5, 13255 (2015)

    Article  ADS  Google Scholar 

  131. W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  132. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing vol. 175 (1984), p. 8

    Google Scholar 

  133. S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  134. C. Crèpeau, J. Kilian, Achieving oblivious transfer using weakened security assumptions, in 29th Annual Symposium on Foundations of Computer Science (1988), pp. 42–52

    Google Scholar 

  135. T. Lunghi, J. Kaniewski, F. Bussières, R. Houlmann, M. Tomamichel, A. Kent, N. Gisin, S. Wehner, H. Zbinden, Experimental bit commitment based on quantum communication and special relativity. Phys. Rev. Lett. 111, 180504 (2013)

    Article  ADS  Google Scholar 

  136. C. Croal, C. Peuntinger, B. Heim, I. Khan, C. Marquardt, G. Leuchs, P. Wallden, E. Andersson, N. Korolkova, Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117, 100503 (2016)

    Article  ADS  Google Scholar 

  137. S.J. Freedman, J.F. Clauser, Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)

    Article  ADS  Google Scholar 

  138. T. Brannan, Z. Qin, A. MacRae, A.I. Lvovsky, Generation and tomography of arbitrary optical qubits using transient collective atomic excitations. Opt. Lett. 39, 5447–5450 (2014)

    Article  ADS  Google Scholar 

  139. R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valleys, Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985)

    Article  ADS  Google Scholar 

  140. A. Lambrecht, T. Coudreau, A.M. Steinberg, E. Giacobino, Squeezing with cold atoms. Europhys. Lett. 36, 93–98 (1996)

    Article  ADS  Google Scholar 

  141. C.F. McCormick, V. Boyer, E. Arimondo, P.D. Lett, Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett. 32, 178–180 (2007)

    Article  ADS  Google Scholar 

  142. N. Corzo, A.M. Marino, K.M. Jones, P.D. Lett, Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor. Opt. Express 19, 21358–21369 (2011)

    Article  ADS  Google Scholar 

  143. V. Boyer, A.M. Marino, P.D. Lett, Generation of spatially broadband twin beams for quantum imaging. Phys. Rev. Lett. 100, 143601 (2008)

    Article  ADS  Google Scholar 

  144. V. Balić, D.A. Braje, P. Kolchin, G.Y. Yin, S.E. Harris, Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005)

    Article  ADS  Google Scholar 

  145. C.W. Chou, S.V. Polyakov, A. Kuzmich, H.J. Kimble, Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004)

    Article  ADS  Google Scholar 

  146. S.V. Polyakov, C.W. Chou, D. Felinto, H.J. Kimble, Temporal dynamics of photon pairs generated by an atomic ensemble. Phys. Rev. Lett. 93, 263601 (2004)

    Article  ADS  Google Scholar 

  147. M.D. Eisaman, L. Childress, A. André, F. Massou, A.S. Zibrov, M.D. Lukin, Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett. 93, 233602 (2004)

    Article  ADS  Google Scholar 

  148. J.F. Chen, S. Zhang, H. Yan, M.M.T. Loy, G.K.L. Wong, S. Du, Shaping biphoton temporal waveforms with modulated classical fields. Phys. Rev. Lett. 104, 183604 (2010)

    Article  ADS  Google Scholar 

  149. A.B. Matsko, I. Novikova, G.R. Welch, D. Budker, D.F. Kimball, S.M. Rochester, Vacuum squeezing in atomic media via self-rotation. Phys. Rev. A 66, 043815 (2002)

    Article  ADS  Google Scholar 

  150. S. Barreiro, P. Valente, H. Failache, A. Lezama, Polarization squeezing of light by single passage through an atomic vapor. Phys. Rev. A 84, 033851 (2011)

    Article  ADS  Google Scholar 

  151. J. Ries, B. Brezger, A.I. Lvovsky, Experimental vacuum squeezing in rubidium vapor via self-rotation. Phys. Rev. A 68, 025801 (2003)

    Article  ADS  Google Scholar 

  152. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    Article  ADS  Google Scholar 

  153. B. Dayan, A.S. Parkins, T. Aoki, E.P. Ostby, K.J. Vahala, H.J. Kimble, A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)

    Article  ADS  Google Scholar 

  154. C.S. Muñoz, E. del Valle, A.G. Tudela, K. Müller, S. Lichtmannecker, M. Kaniber, C. Tejedor, J.J. Finley, F.P. Laussy, Emitters of n-photon bundles. Nat. Phot. 8, 550–555 (2014)

    Article  Google Scholar 

  155. D.V. Strekalov, A bundle of photons, please. Nat. Phot. 8, 500–501 (2014)

    Article  Google Scholar 

  156. T. Basche, W.E. Moerner, M. Orrit, H. Talon, Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992)

    Article  ADS  Google Scholar 

  157. C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722–2725 (1999)

    Article  ADS  MATH  Google Scholar 

  158. B. Lounis, W.E. Moerner, Single photons on demand from a singlemolecule at room temperature. Nature 407, 491–493 (2000)

    Article  ADS  Google Scholar 

  159. B. Lounis, M. Orrit, Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005)

    Article  ADS  Google Scholar 

  160. S. Buckley, K. Rivoire, J. Vučković, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012)

    Article  ADS  Google Scholar 

  161. P. Michler, A. Imamoglu, M.D. Maso, P.J. Carson, G.F. Strouse, S.K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)

    Article  ADS  Google Scholar 

  162. S. Bounouar, M. Elouneg-Jamroz, M. d. Hertog, C. Morchutt, E. Bellet-Amalric, R. André, C. Bougerol, Y. Genuist, J.-P. Poizat, S. Tatarenko, K. Kheng, Ultrafast room temperature single-photon source from nanowire-quantum dots. Nano Lett. 12, 2977–2981 (2012)

    Article  ADS  Google Scholar 

  163. M.J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa, Room-temperature triggered single photon emission from a iii-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014)

    Article  ADS  Google Scholar 

  164. A. Högele, C. Galland, M. Winger, A. Imamolu, Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008)

    Article  ADS  Google Scholar 

  165. S. Schietinger, T. Schröder, O. Benson, One-by-one coupling of single defect centers in nanodiamonds to high-q modes of an optical microresonator. Nano Lett. 8(11), 3911–3915 (2008)

    Article  ADS  Google Scholar 

  166. T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, A diamond nanowire single-photon source. Nat. Nanotech. 5, 195–199 (2010)

    Article  ADS  Google Scholar 

  167. C.H.H. Schulte, J. Hansom, A.E. Jones, C. Matthiesen, C. Le Gall, M. Atatüre, Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015)

    Article  ADS  Google Scholar 

  168. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, Y. Yamamoto, Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007)

    Article  ADS  Google Scholar 

  169. S. Strauf, N.G. Stoltz, M.T. Rakher, L.A. Coldren, P.M. Petroff, D. Bouwmeester, High-frequency single-photon source with polarization control. Nat. Phot. 1, 704–708 (2007)

    Article  Google Scholar 

  170. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    Article  ADS  Google Scholar 

  171. K. Srinivasan, O. Painter, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 450, 862–865 (2007)

    Article  ADS  Google Scholar 

  172. M.N. Makhonin, J.E. Dixon, R.J. Coles, B. Royall, I.J. Luxmoore, E. Clarke, M. Hugues, M.S. Skolnick, A.M. Fox, Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano Lett. 14, 6997–7002 (2014)

    Article  ADS  Google Scholar 

  173. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  Google Scholar 

  174. R.M. Stevenson, R.J. Young, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006)

    Article  ADS  Google Scholar 

  175. T. Kuroda, T. Mano, N. Ha, H. Nakajima, H. Kumano, B. Urbaszek, M. Jo, M. Abbarchi, Y. Sakuma, K. Sakoda, I. Suemune, X. Marie, T. Amand, Symmetric quantum dots as efficient sources of highly entangled photons: Violation of bell’s inequality without spectral and temporal filtering. Phys. Rev. B 88, 041306 (2013)

    Article  ADS  Google Scholar 

  176. H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G.S. Solomon, G. Weihs, Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013)

    Article  ADS  Google Scholar 

  177. N. Dotti, F. Sarti, S. Bietti, A. Azarov, A. Kuznetsov, F. Biccari, A. Vinattieri, S. Sanguinetti, M. Abbarchi, M. Gurioli, Germanium-based quantum emitters towards a time-reordering entanglement scheme with degenerate exciton and biexciton states. Phys. Rev. B 91, 205316 (2015)

    Article  ADS  Google Scholar 

  178. R. Trotta, J.S. Wildmann, E. Zallo, O.G. Schmidt, A. Rastelli, Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett. 14, 3439–3444 (2014)

    Article  ADS  Google Scholar 

  179. R.J. Young, R.M. Stevenson, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006)

    Article  ADS  Google Scholar 

  180. M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Phot. 8, 224–228 (2014)

    Article  Google Scholar 

  181. J.A. Giordmaine, R.C. Miller, Tunable coherent parametric oscillation in \(\text{LiNbO}{_3}\) at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965)

    Article  ADS  Google Scholar 

  182. D.N. Klyshko, Scattering of light in a medium with nonlinear polarizability. JETP Lett. 28, 522–526 (1969)

    Google Scholar 

  183. D. Strekalov, A.B. Matsko, A.A. Savchenkov, L. Maleki, Relationship between quantum two-photon correlation and classical spectrum of light. Phys. Rev. A 71, 041803 (2005)

    Article  ADS  MATH  Google Scholar 

  184. M.H. Rubin, D.N. Klyshko, Y.H. Shih, A.V. Sergienko, Theory of two-photon entanglement in type-ii optical parametric down-conversion. PRA 50, 5122–5133 (1994)

    Article  ADS  Google Scholar 

  185. E. Dauler, G. Jaeger, A. Muller, A. Migdall, A. Sergienko, Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision. J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999)

    Article  Google Scholar 

  186. A. Valencia, M.V. Chekhova, A. Trifonov, Y. Shih, Entangled two-photon wave packet in a dispersive medium. Phys. Rev. Lett. 88, 183601 (2002)

    Article  ADS  Google Scholar 

  187. D. Strekalov, A.B. Matsko, A. Savchenkov, L. Maleki, Quantum-correlation metrology with biphotons: where is the limit? J. Mod. Opt. 52, 2233–2243 (2005)

    Article  ADS  MATH  Google Scholar 

  188. M. Scholz, L. Koch, O. Benson, Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett. 102, 63603 (2009)

    Article  ADS  Google Scholar 

  189. C.-S. Chuu, G.Y. Yin, S.E. Harris, A miniature ultrabright source of temporally long, narrowband biphotons. Appl. Phys. Lett. 101, 051108 (2012)

    Article  ADS  Google Scholar 

  190. M. Förtsch, J.U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M.V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013)

    Article  ADS  Google Scholar 

  191. A.V. Burlakov, M.V. Chekhova, D.N. Klyshko, S.P. Kulik, A.N. Penin, Y.H. Shih, D.V. Strekalov, Interference effects in spontaneous two-photon parametric scattering from two macroscopic regions. Phys. Rev. A 56, 3214–3225 (1997)

    Article  ADS  Google Scholar 

  192. T.S. Iskhakov, S. Lemieux, A. Perez, R.W. Boyd, G. Leuchs, M.V. Chekhova, Nonlinear interferometer for tailoring the frequency spectrum of bright squeezed vacuum. J. Mod. Opt. 63, 64–70 (2016)

    Article  ADS  Google Scholar 

  193. T. Setälä, T. Shirai, A.T. Friberg, Fractional fourier transform in temporal ghost imaging with classical light. Phys. Rev. A 82, 043813 (2010)

    Article  ADS  Google Scholar 

  194. D. Sych, V. Averchenko, G. Leuchs, Shaping a single photon without interacting with it. Phys. Rev. A 96, 053847 (2017)

    Google Scholar 

  195. V. Averchenko, D. Sych, G. Leuchs, Heralded temporal shaping of single photons enabled by entanglement. Phys. Rev. A 96, 043822 (2017)

    Google Scholar 

  196. P.R. Tapster, J.G. Rarity, Photon statistics of pulsed parametric light. J. Mod. Opt. 45, 595–604 (1998)

    Article  ADS  Google Scholar 

  197. P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, P.H. Eberhard, Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999)

    Article  ADS  Google Scholar 

  198. J.T. Barreiro, N.K. Langford, N.A. Peters, P.G. Kwiat, Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  199. T.S. Iskhakov, A.M. Pérez, K.Y. Spasibko, M.V. Chekhova, G. Leuchs, Superbunched bright squeezed vacuum state. Opt. Lett. 37, 1919–1921 (2012)

    Article  ADS  Google Scholar 

  200. K. Sanaka, K. Kawahara, T. Kuga, New high-efficiency source of photon pairs for engineering quantum entanglement. Phys. Rev. Lett. 86, 5620–5623 (2001)

    Article  ADS  Google Scholar 

  201. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, C. Silberhorn, An optimized photon pair source for quantum circuits. Opt Express 21, 13975–13985 (2013)

    Article  ADS  Google Scholar 

  202. A.M. Pérez, K.Y. Spasibko, P.R. Sharapova, O.V. Tikhonova, G. Leuchs, M.V. Chekhova, Giant narrowband twin-beam generation along the pump-energy propagation direction. Nat. Commun. 6, 7707 (2015)

    Article  ADS  Google Scholar 

  203. M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Event-ready-detectors bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  204. M. Zukowski, A. Zeilinger, H. Weinfurter, Entangling photons radiated by independent pulsed sources. Ann. NY Acad. Sci. 755, 91 (1995)

    Article  ADS  Google Scholar 

  205. M. Rådmark, M. Zukowski, M. Bourennane, Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state. Phys. Rev. Lett. 103, 150501 (2009)

    Article  ADS  Google Scholar 

  206. O. Aytur, P. Kumar, Squeezed-light generation with a mode-locked q-switched laser and detection by using a matched local oscillator. Opt. Lett. 17, 529–531 (1992)

    Article  ADS  Google Scholar 

  207. C. Kim, P. Kumar, Quadrature-squeezed light detection using a self-generated matched local oscillator. Phys. Rev. Lett. 73, 1605–1608 (1994)

    Article  ADS  Google Scholar 

  208. K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, F. Kannari, Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a sagnac interferometer. Phys. Rev. A 80, 043832 (2009)

    Article  ADS  Google Scholar 

  209. M. Pysher, R. Bloomer, C.M. Kaleva, T.D. Roberts, B. Philip, O. Pfister, Broadband amplitude squeezing in a periodically poled \(\text{KTiOPO}_4\) waveguide. Opt. Lett. 34, 256–258 (2009)

    Article  ADS  Google Scholar 

  210. G. Breitenbach, S. Schiller, J. Mlynek, Measurement of the quantum states of squeezed light. Nature 387, 471–475 (1997)

    Article  ADS  Google Scholar 

  211. M. Lassen, M. Sabuncu, P. Buchhave, U.L. Andersen, Generation of polarization squeezing with periodically poled KTP at 1064 nm. Opt. Expr. 15, 5077–5082 (2007)

    Article  ADS  Google Scholar 

  212. A.M. Pérez, T.S. Iskhakov, P. Sharapova, S. Lemieux, O.V. Tikhonova, M.V. Chekhova, G. Leuchs, Bright squeezed-vacuum source with 1.1 spatial mode. Opt. Lett. 39, 2403–2406 (2014)

    Article  ADS  Google Scholar 

  213. Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, K. Peng, Cascaded entanglement enhancement. Phys. Rev. A 85, 040305 (2012)

    Article  ADS  Google Scholar 

  214. L.-A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986)

    Article  ADS  Google Scholar 

  215. S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, A. Furusawa, 7 dB quadrature squeezing at 860 nm with periodically poled \(\text{KTiOPO}{_4}\). Appl. Phys. Lett. 89, 061116 (2006)

    Article  ADS  Google Scholar 

  216. Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, Observation of \({-}9\) dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express 15, 4321–4327 (2007)

    Article  ADS  Google Scholar 

  217. G. Hétet, O. Glöckl, K.A. Pilypas, C.C. Harb, B.C. Buchler, H.-A. Bachor, P.K. Lam, Squeezed light for bandwidth-limited atom optics experiments at the rubidium d1 line. J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007)

    Article  ADS  Google Scholar 

  218. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, R. Schnabel, Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 100, 033602 (2008)

    Article  ADS  Google Scholar 

  219. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010)

    Article  ADS  Google Scholar 

  220. A. Heidmann, R.J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, G. Camy, Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett. 59, 2555–2557 (1987)

    Article  ADS  Google Scholar 

  221. J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, Improvements in the observed intensity correlation of optical parametric oscillator twin beams. Opt. Lett. 16, 1234–1236 (1991)

    Article  ADS  Google Scholar 

  222. P.R. Tapster, J.G. Rarity, J.S. Satchell, Use of parametric down-conversion to generate sub-poissonian light. Phys. Rev. A 37, 2963–2967 (1988)

    Article  ADS  Google Scholar 

  223. J. Mertz, A. Heidmann, C. Fabre, Generation of sub-poissonian light using active control with twin beams. Phys. Rev. A 44, 3229–3238 (1991)

    Article  ADS  Google Scholar 

  224. J. Laurat, T. Coudreau, N. Treps, A. Maître, C. Fabre, Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-poissonian state from twin beams. Phys. Rev. Lett. 91, 213601 (2003)

    Article  ADS  Google Scholar 

  225. J. Hald, J.L. Sørensen, C. Schori, E.S. Polzik, Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999)

    Article  ADS  Google Scholar 

  226. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, M. Kozuma, Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008)

    Article  ADS  Google Scholar 

  227. M. Scholz, L. Koch, R. Ullmann, O. Benson, Single-mode operation of a high-brightness narrow-band single-photon source. Appl. Phys. Lett. 94, 201105 (2009)

    Article  ADS  Google Scholar 

  228. F. Wolfgramm, Y.A. de Icaza Astiz, F.A. Beduini, A. Cerè, M.W. Mitchell, Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett. 106, 053602 (2011)

    Google Scholar 

  229. A.B. Matsko, V.S. Ilchenko, Optical resonators with whispering-gallery modes-part I: basics. J. Sel. Top. Quantum Electron. 12, 3 (2006)

    Article  Google Scholar 

  230. V.S. Ilchenko, A.B. Matsko, Optical resonators with whispering-gallery modes-part II: applications. J. Sel. Top. Quantum Electron. 12, 15–32 (2006)

    Article  Google Scholar 

  231. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini, Spherical whispering-gallery-mode microresonators. Las. Phot. Rev. 4, 457–482 (2010)

    Article  ADS  Google Scholar 

  232. D.V. Strekalov, C. Marquardt, A.B. Matsko, H.G.L. Schwefel, G. Leuchs, Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 18, 123002 (2016)

    Article  ADS  Google Scholar 

  233. D.V. Strekalov, A.S. Kowligy, Y.-P. Huang, P. Kumar, Optical sum-frequency generation in a whispering-gallery-mode resonator. New J. Phys. 16, 053025 (2014)

    Article  ADS  Google Scholar 

  234. A.A. Savchenkov, A.B. Matsko, M. Mohageg, D.V. Strekalov, L. Maleki, Parametric oscillations in a whispering gallery resonator. Opt. Lett. 32, 157–159 (2007)

    Article  ADS  Google Scholar 

  235. J.U. Fürst, D.V. Strekalov, D. Elser, A. Aiello, U.L. Andersen, C. Marquardt, G. Leuchs, Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett. 105, 263904 (2010)

    Article  ADS  Google Scholar 

  236. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, I. Breunig, Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett. 106, 143903 (2011)

    Article  ADS  Google Scholar 

  237. T. Beckmann, K. Buse, I. Breunig, Optimizing pump threshold and conversion efficiency of whispering gallery optical parametric oscillators by controlled coupling. Opt. Lett. 37, 5250–5252 (2012)

    Article  ADS  Google Scholar 

  238. C.S. Werner, T. Beckmann, K. Buse, I. Breunig, Blue-pumped whispering gallery optical parametric oscillator. Opt. Lett. 37, 4224–4226 (2012)

    Article  ADS  Google Scholar 

  239. C.S. Werner, K. Buse, I. Breunig, Continuous-wave whispering-gallery optical parametric oscillator for high-resolution spectroscopy. Opt. Lett. 40, 772–775 (2015)

    Article  ADS  Google Scholar 

  240. M. Förtsch, T. Gerrits, M.J. Stevens, D. Strekalov, G. Schunk, J.U. Fürst, U. Vogl, F. Sedlmeir, H.G.L. Schwefel, G. Leuchs, S.W. Nam, C. Marquardt, Near-infrared single-photon spectroscopy of a whispering gallery mode resonator using energy-resolving transition edge sensors. J. Opt. 17, 065501 (2015)

    Article  ADS  Google Scholar 

  241. A. Sizmann, R.J. Horowitz, G. Wagner, G. Leuchs, Observation of amplitude squeezing of the up-converted mode in second harmonic generation. Opt. Commun. 80, 138–142 (1990)

    Article  ADS  Google Scholar 

  242. P. Kurz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Squeezing by second-harmonic generation in a monolithic resonator. Appl. Phys. B 55, 216–225 (1992)

    Article  ADS  Google Scholar 

  243. P.D. Drummond, K.J. McNeil, D.F. Walls, Non-equilibrium transitions in sub/second harmonic generation II: quantum theory. Opt. Acta 28, 211–225 (1981)

    Article  Google Scholar 

  244. S.F. Pereira, M. Xiao, H.J. Kimble, J.L. Hall, Generation of squeezed light by intracavity frequency doubling. Phys. Rev. A 38, 4931 (1988)

    Article  ADS  Google Scholar 

  245. B. Hage, A. Samblowski, R. Schnabel, Towards einstein-podolsky-rosen quantum channel multiplexing. Phys. Rev. A 81, 062301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  246. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, O. Pfister, Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505 (2011)

    Article  ADS  Google Scholar 

  247. A. Brieussel, Y. Shen, G. Campbell, G. Guccione, J. Janousek, B. Hage, B.C. Buchler, N. Treps, C. Fabre, F.Z. Fang, X.Y. Li, T. Symul, P.K. Lam, Squeezed light from a diamond-turned monolithic cavity. Opt. Express 24, 4042 (2016)

    Article  ADS  Google Scholar 

  248. C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, 2005)

    Google Scholar 

  249. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)

    Article  ADS  Google Scholar 

  250. M. Kitagawa, Y. Yamamoto, Number-phase minimum-uncertainty state with reduced number uncertainty in a kerr nonlinear interferometer. Phys. Rev. A 34, 3974–3988 (1986)

    Article  ADS  Google Scholar 

  251. R.M. Shelby, M.D. Levenson, S.H. Perlmutter, R.G. DeVoe, D.F. Walls, Broad-band parametric deamplification of quantum noise in an optical fiber. Phys. Rev. Lett. 57, 691–694 (1986)

    Article  ADS  Google Scholar 

  252. K. Bergman, H.A. Haus, Squeezing in fibers with optical pulses. Opt. Lett. 16, 663–665 (1991)

    Article  ADS  Google Scholar 

  253. M. Rosenbluh, R.M. Shelby, Squeezed optical solitons. Phys. Rev. Lett. 66, 153–156 (1991)

    Article  ADS  Google Scholar 

  254. S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, G. Leuchs, Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer. Phys. Rev. Lett. 81, 2446–2449 (1998)

    Article  ADS  Google Scholar 

  255. D. Krylov, K. Bergman, Amplitude-squeezed solitons from an asymmetric fiber interferometer. Opt. Lett. 23, 1390–1392 (1998)

    Article  ADS  Google Scholar 

  256. S.R. Friberg, S. Machida, M.J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing. Phys. Rev. Lett. 77, 3775–3778 (1996)

    Article  ADS  Google Scholar 

  257. S. Spälter, M. Burk, U. Strößner, A. Sizmann, G. Leuchs, Propagation of quantum properties of subpicosecond solitons in a fiber. Opt. Express 2, 77–83 (1998)

    Article  ADS  Google Scholar 

  258. C. Riek, P. Sulzer, M. Seeger, A.S. Moskalenko, G. Burkard, D.V. Seletskiy, A. Leitenstorfer, Subcycle quantum electrodynamics. Nature 541, 376–379 (2017)

    Article  ADS  Google Scholar 

  259. A.S. Moskalenko, C. Riek, D.V. Seletskiy, G. Burkard, A. Leitenstorfer, Paraxial theory of direct electro-optic sampling of the quantum vacuum. Phys. Rev. Lett. 115, 263601 (2015)

    Article  ADS  Google Scholar 

  260. C. Riek, D.V. Seletskiy, A.S. Moskalenko, J.F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, A. Leitenstorfer, Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  261. D. Levandovsky, M. Vasilyev, P. Kumar, Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier. Opt. Lett. 24, 984–986 (1999)

    Article  ADS  Google Scholar 

  262. J. Heersink, V. Josse, G. Leuchs, U.L. Andersen, Efficient polarization squeezing in optical fibers. Opt. Lett. 30, 1192–1194 (2005)

    Article  ADS  Google Scholar 

  263. R. Dong, J. Heersink, J.F. Corney, P.D. Drummond, U.L. Andersen, G. Leuchs, Experimental evidence for raman-induced limits to efficient squeezing in optical fibers. Opt. Lett. 33, 116–118 (2008)

    Article  ADS  Google Scholar 

  264. M. Margalit, C.X. Xu, E.P. Ippen, H.A. Haus, Cross phase modulation squeezing in optical fibers. Opt. Express 2, 72–76 (1998)

    Article  ADS  Google Scholar 

  265. K. Hirosawa, H. Furumochi, A. Tada, F. Kannari, M. Takeoka, M. Sasaki, Photon number squeezing of ultrabroadband laser pulses generated by microstructure fibers. Phys. Rev. Lett. 94, 203601 (2005)

    Article  ADS  Google Scholar 

  266. J. Milanovic, M. Lassen, U.L. Andersen, G. Leuchs, A novel method for polarization squeezing with photonic crystal fibers. Opt. Express 18, 1521–1527 (2010)

    Article  ADS  Google Scholar 

  267. J.G. Rarity, J. Fulconis, J. Duligall, W.J. Wadsworth, P.S.J. Russell, Photonic crystal fiber source of correlated photon pairs. Opt. Express 13, 534–544 (2005)

    Article  ADS  Google Scholar 

  268. J. Fan, A. Migdall, A broadband high spectral brightness fiberbased two-photon source. Opt. Express 15, 2915–2920 (2007)

    Article  ADS  Google Scholar 

  269. J. Nold, P. Hölzer, N.Y. Joly, G.K.L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, P.S.J. Russell, Pressure-controlled phase matching to third harmonic in ar-filled hollow-core photonic crystal fiber. Opt. Lett. 35, 2922–2924 (2010)

    Article  ADS  Google Scholar 

  270. M.A. Finger, T.S. Iskhakov, N.Y. Joly, M.V. Chekhova, P.S.J. Russell, Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum. Phys. Rev. Lett. 115, 143602 (2015)

    Article  ADS  Google Scholar 

  271. U. Vogl, N.Y. Joly, P.S.J. Russell, C. Marquardt, G. Leuchs, Squeezed light and self-induced transparency in mercury-filled hollow core photonic crystal fibers (2015)

    Google Scholar 

  272. T.D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, F. Benabid, Optical properties of low loss (70 dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications. J. Lightwave Tech. 31, 2752–2755 (2013)

    Article  ADS  Google Scholar 

  273. Y.K. Chembo, D.V. Strekalov, N. Yu, Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett. 104, 103902 (2010)

    Article  ADS  Google Scholar 

  274. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg, Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007)

    Article  ADS  Google Scholar 

  275. W. Liang, A.A. Savchenkov, Z. Xie, J.F. McMillan, J. Burkhart, V.S. Ilchenko, C.W. Wong, A.B. Matsko, L. Maleki, Miniature multioctave light source based on a monolithic microcavity. Optica 2, 40 (2015)

    Article  Google Scholar 

  276. S. Clemmen, K.P. Huy, W. Bogaerts, R.G. Baets, P. Emplit, S. Massar, Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 17(19), 16558–16570 (2009)

    Article  ADS  Google Scholar 

  277. S. Azzini, D. Grassani, M.J. Strain, M. Sorel, L.G. Helt, J.E. Sipe, M. Liscidini, M. Galli, D. Bajoni, Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20(21), 23100–23107 (2012)

    Article  ADS  Google Scholar 

  278. E. Engin, D. Bonneau, C.M. Natarajan, A.S. Clark, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J.L. O’Brien, M.G. Thompson, Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express 21(23), 27826 (2013)

    Article  ADS  Google Scholar 

  279. Y. Guo, W. Zhang, S. Dong, Y. Huang, J. Peng, Telecom-band degenerate-frequency photon pair generation in silicon microring cavities. Opt. Lett. 39(8), 2526–2529 (2014)

    Article  ADS  Google Scholar 

  280. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M.J. Strain, M. Sorel, J.E. Sipe, D. Bajoni, Micrometer-scale integrated silicon source of time-energy entangled photons. Optica 2(2), 88–94 (2015)

    Article  Google Scholar 

  281. R. Wakabayashi, M. Fujiwara, K.-I. Yoshino, Y. Nambu, M. Sasaki, T. Aoki, Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express 23(2), 1103 (2015)

    Article  ADS  Google Scholar 

  282. J. Suo, S. Dong, W. Zhang, Y. Huang, J. Peng, Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity. Opt. Express 23(4), 3985–3995 (2015)

    Article  ADS  Google Scholar 

  283. A. Dutt, K. Luke, S. Manipatruni, A.L. Gaeta, P. Nussenzveig, M. Lipson, On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015)

    Article  ADS  Google Scholar 

  284. U.B. Hoff, B.M. Nielsen, U.L. Andersen, Integrated source of broadband quadrature squeezed light. Opt. Express 23, 12013–12036 (2015)

    Article  ADS  Google Scholar 

  285. T.P. Purdy, P.-L. Yu, R.W. Peterson, N.S. Kampel, C.A. Regal, Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013)

    Google Scholar 

  286. A.H. Safavi-Naeini, S. Gröblacher, J.T. Hill, J. Chan, M. Aspelmeyer, O. Painter, Squeezed light from a silicon micromechanical resonator. Nature 500, 185–189 (2013)

    Article  ADS  Google Scholar 

  287. M.C. Teich, B.E.A. Saleh, Observation of sub-poisson Franck-hertz light at 253.7 nm. JOSA B 2, 275–282 (1985)

    Article  ADS  Google Scholar 

  288. W. Schottky, E. Spehnke, Raumladungsschwächung des schroteffekts. Wiss. Veröff. Siemens-Werke 16, 1–18 (1937)

    Google Scholar 

  289. Y. Yamamoto, S. Machida, High-impedance suppression of pump fluctuation and amplitude squeezing. Phys. Rev. A 35, 5114–5130 (1987)

    Article  ADS  Google Scholar 

  290. S. Machida, Y. Yamamoto, Y. Itaya, Observation of amplitude squeezing in a constant-current- driven semiconductor laser. Phys. Rev. Lett. 58, 1000–1003 (1987)

    Article  ADS  Google Scholar 

  291. S. Machida, Y. Yamamoto, Ultrabroadband amplitude squeezing in a semiconductor laser. Phys. Rev. Lett. 60, 792–794 (1988)

    Article  ADS  Google Scholar 

  292. W.H. Richardson, S. Machida, Y. Yamamoto, Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser. Phys. Rev. Lett. 66, 2867–2870 (1991)

    Article  ADS  Google Scholar 

  293. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.P. Poizat, J.-F. Roch, P. Grangier, Squeezing and intermode correlations in laser diodes. Phys. Rev. Lett. 75, 4606–4609 (1995)

    Article  ADS  Google Scholar 

  294. I. Maurin, I. Protsenko, J.-P. Hermier, A. Bramati, P. Grangier, E. Giacobino, Light intensity-voltage correlations and leakage-current excess noise in a single-mode semiconductor laser. Phys. Rev. A 72, 033823 (2005)

    Article  ADS  Google Scholar 

  295. H. Wang, M.J. Freeman, D.G. Steel, Squeezed light from injection-locked quantum well lasers. Phys. Rev. Lett. 71, 3951–3954 (1993)

    Article  ADS  Google Scholar 

  296. M.J. Freeman, H. Wang, D.G. Steel, R. Craig, D.R. Scifres, Wavelength-tunable amplitude-squeezed light from a room-temperature quantum-well laser. Opt. Lett. 18, 2141–2143 (1993)

    Article  ADS  Google Scholar 

  297. F. Wolfl, R.G. Ispasoiu, J.F. Ryan, A.M. Fox, Photon-number squeezing in a free-running quantum-well laser operating at 980 nm. J. Opt. B: Quantum Semiclass. Opt. 4, 129–133 (2002)

    Article  ADS  Google Scholar 

  298. M. Uemukai, S. Nozu, T. Suhara, High-efficiency InGaAs QW distributed bragg reflector laser with curved grating for squeezed light generation. J. Sel. Top. Quantum Electron. 11, 1143–1147 (2005)

    Article  Google Scholar 

  299. Y. Yamamoto, N. Imoto, S. Machida, Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback. Phys. Rev. A 33, 3243–3261 (1986)

    Article  ADS  Google Scholar 

  300. B.C. Buchler, M.B. Gray, D.A. Shaddock, T.C. Ralph, D.E. McClelland, Suppression of classic and quantum radiation pressure noise by electro-optic feedback. Opt. Lett. 24, 259–261 (1999)

    Article  ADS  Google Scholar 

  301. J.H. Shapiro, G. Saplakoglu, S.-T. Ho, P. Kumar, B.E.A. Saleh, M.C. Teich, Theory of light detection in the presence of feedback. JOSA B 4, 1604–1620 (1987)

    Article  ADS  Google Scholar 

  302. S. Mancini, D. Vitali, P. Tombesi, Motional squashed states. J. Opt. B: Quantum Semiclass. Opt. 2, 190–195 (2000)

    Article  ADS  Google Scholar 

  303. A.O. Caldeira, A.J. Leggett, Influence of damping on quantum interference: an exactly soluble model. Phys. Rev. A 31, 1059–1066 (1985)

    Article  ADS  Google Scholar 

  304. G. Leuchs, U. Andersen, The effect of dissipation on non-classical states of the radiation field. Las. Phys. 15, 129–134 (2005)

    Google Scholar 

  305. J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44, 1323–1326 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  306. G. Rempe, H. Walther, N. Klein, Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Drs. M. Raymer and M. Gurioli for valuable comments. D. V. S. would like to thank the Alexander von Humboldt Foundation for sponsoring his collaboration with the Max Plank Institute for the physics of light in Erlangen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Strekalov .

Editor information

Editors and Affiliations

Appendix: Is Coherent Light Quantum?

Appendix: Is Coherent Light Quantum?

Let us consider the following series of thought experiments. The toolbox we need contains a source of laser light, a beam splitter, two time resolving detectors of high bandwidth, and electronic equipment to analyze the detector signals. In the first experiment (1) measuring the intensity correlations after splitting the laser light with the beam splitter yields a \(g^{(2)}(\tau )\) which is independent of time \(\tau \). This can be described by a classical model, namely classical light fields without fluctuations—fine. Now the second experiment (2) is to measure the intensity of the laser light as a function of time. The result is a fluctuating detector signal (corresponding to the Poisson statistics of the photons in a quantum language). A classical model can also describe this. This time it is a model in which the classical electric fields fluctuate—this is also fine, but note that the models required are not compatible.

You may not be satisfied and argue that the fluctuation observed in experiment (2) may well come from the detectors themselves contributing noise. This would average out in experiment (1) because the noises introduced by the two detectors are of course not correlated. But suppose the lab next door happens to have amplitude squeezed light, with intensity fluctuations suppressed by 15 dB below the shot noise. Measuring the squeezed light intensity noise you convince yourself easily that the detector does not introduce enough noise to explain experiment (2). Note that this test should convince you even if you have no clue what the squeezed light is.

But you do not want to give up so easily and you say “what if a classically noisy light field enters the second input port, uncorrelated with the laser light but likewise modeled by classical stochastic fluctuations?”. And you are right, this more involved classical model would explain both experiments (1) and (2)—yet there is (3) a third experiment we can do. We can check the intensity of the light arriving at this second input port of the beam splitter and no matter how sensitive the intensity measuring detectors are they will detect no signal. But this is not compatible with a classical model: classical fluctuations always lead to measurable intensity noise.

We conclude by noting that obviously coherent states are non-classical because there is no single classical stochastic model which describes all possible experiments with laser light. But as we have seen it is tedious to go through these arguments, and no simple measure of non-classicality was found so far qualifying a coherent state as non-classical. Nevertheless, the non-classical nature of a coherent state is used in some quantum protocols.

It is interesting to note that there is a much different scenario in which experiments with coherent states cannot be described classically without field quantization, i.e. with semi classical theory. Coherent states lead e.g. to a revival of Rabi oscillations in their interaction with an atom in the Jaynes Cummings model. This effect can only be properly described when properly accounting for the quantization of the electromagnetic field [305, 306]. Thus the hypothesis is that for any pure quantum state it is always possible to find experimental scenarios, which can only be properly described using field quantization. Let us furthermore note that also thermal states, i.e. mixed quantum states, can still be somewhat nonclassical in nature if the classical excess noise is not too much larger than the underlying quantum uncertainty.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strekalov, D.V., Leuchs, G. (2019). Nonlinear Interactions and Non-classical Light. In: Boyd, R., Lukishova, S., Zadkov, V. (eds) Quantum Photonics: Pioneering Advances and Emerging Applications. Springer Series in Optical Sciences, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-98402-5_3

Download citation

Publish with us

Policies and ethics