Skip to main content

Ultrafast Nonlinear Optics in the Mid-Infrared

  • Chapter
  • First Online:
Book cover Quantum Photonics: Pioneering Advances and Emerging Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 217))

  • 2802 Accesses

Abstract

The mid-infrared spectral range is unique in many ways. Within this region, electromagnetic radiation can resonate with the most intense signature molecular bands, thus drastically enhancing the coupling between the field and molecular motions. Electrons driven by intense ultrashort mid-IR field waveforms acquire unusually high ponderomotive energies within a fraction of the field cycle, giving rise to new regimes of high-field nonlinear optics. The λ2 scaling of phase-space mode volume with radiation wavelength λ translates into the λ2 dependence of the self-focusing threshold, allowing much higher peak powers to be transmitted in a single laser filament in the mid-IR range without losing beam continuity and spatial coherence. Recent breakthroughs in the generation of high-intensity ultrashort pulses in the mid-IR help understand complex interactions of high-intensity ultrashort mid-IR pulses with matter, offer new approaches for coherent and incoherent x-ray generation, enable mid-IR laser filamentation in the atmosphere, facilitate lasing in filaments, give rise to unique regimes of laser-matter interactions, and reveal unexpected properties of materials in the mid-IR range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Agostini, L.F. DiMauro, Atoms in high intensity mid-infrared pulses. Contemp. Phys. 49, 179–197 (2008)

    Article  ADS  Google Scholar 

  2. C.I. Blaga, F. Catoire, P. Colosimo, G.G. Paulus, H.G. Muller, P. Agostini, L.F. DiMauro, Strong-field photoionization revisited. Nat. Phys. 5, 335–338 (2008)

    Article  Google Scholar 

  3. J.M. Chalmers, P.R. Griffiths (eds.), Handbook of Vibrational Spectroscopy (Wiley, 2002)

    Google Scholar 

  4. A. Schliesser, N. Picqué, T.W. Hänsch, Mid-infrared frequency combs. Nat. Photonics 6, 440–449 (2012)

    Article  ADS  Google Scholar 

  5. A. Krier (ed.), Mid-Infrared Semiconductor Optoelectronics, vol. 118 (Springer Series in Optical Sciences, 2006)

    Google Scholar 

  6. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S.L. Chin, A. Baltuška, Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 86, 033831 (2012)

    Article  ADS  Google Scholar 

  7. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M.M. Murnane, H.C. Kapteyn, 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett. 36, 2755–2757 (2011)

    Article  ADS  Google Scholar 

  8. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balciunas, O.D. Mücke, A. Pugžlys, A. Baltuška, B. Shim, S.E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M.M. Murnane, H.C. Kapteyn, Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, A. Baltuška, High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses. Nat. Photonics 8, 927–930 (2014)

    Article  ADS  Google Scholar 

  10. A.V. Mitrofanov, A.A. Voronin, D.A. Sidorov-Biryukov, A. Pugžlys, E.A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A.B. Fedotov, A. Baltuška, A.M. Zheltikov, Mid-infrared laser filaments in the atmosphere. Sci. Rep. 5, 8368 (2015)

    Article  ADS  Google Scholar 

  11. P. Panagiotopoulos, P. Whalen, M. Kolesik, J.V. Moloney, Super high-power mid-infrared femtosecond light bullet. Nat. Photonics 9, 543–548 (2015)

    Article  ADS  Google Scholar 

  12. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, A. Baltuška, White light generation over three octaves by femtosecond filament at 3.9 µm in argon. Opt. Lett. 37, 3456–3458 (2012)

    Article  ADS  Google Scholar 

  13. A.V. Mitrofanov, A.A. Voronin, S.I. Mitryukovskiy, D.A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E.A. Stepanov, A.B. Fedotov, A. Baltuška, A.M. Zheltikov, Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics. Opt. Lett. 40, 2068–2071 (2015)

    Article  ADS  Google Scholar 

  14. E.E. Serebryannikov, A.M. Zheltikov, Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle. Phys. Rev. Lett. 113, 043901 (2014)

    Article  ADS  Google Scholar 

  15. D. Kartashov, S. Ališauskas, A. Pugžlys, A.A. Voronin, A.M. Zheltikov, A. Baltuška, Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity. Opt. Lett. 37, 2268–2270 (2012)

    Article  ADS  Google Scholar 

  16. A.A. Lanin, A.A. Voronin, E.A. Stepanov, A.B. Fedotov, A.M. Zheltikov, Multioctave, 3–18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid. Opt. Lett. 40, 974–977 (2015)

    Article  ADS  Google Scholar 

  17. E.A. Stepanov, A.A. Lanin, A.A. Voronin, A.B. Fedotov, A.M. Zheltikov, A solid-state source of subcycle pulses in the mid-infrared, in preparation

    Google Scholar 

  18. A.V. Mitrofanov, A.A. Voronin, D.A. Sidorov-Biryukov, A. Pugžlys, E.A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A.B. Fedotov, A. Baltuška, A.M. Zheltikov, Mid-infrared laser filaments in the atmosphere. Sci. Rep. 5, 8368 (2015)

    Article  ADS  Google Scholar 

  19. A.V. Mitrofanov, D.A. Sidorov-Biryukov, A.A. Voronin, A. Pugžlys, G. Andriukaitis, E.A. Stepanov, S. Ališauskas, T. Flöri, A.B. Fedotov, V.Ya. Panchenko, A. Baltuška, A.M. Zheltikov, Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields. Phys. Usp. 58, 89–94 (2015)

    Article  ADS  Google Scholar 

  20. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, A. Baltuška, Mid-infrared laser filamentation in molecular gases. Opt. Lett. 38, 3194–3197 (2013)

    Article  ADS  Google Scholar 

  21. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1991 (1993)

    Article  ADS  Google Scholar 

  22. P. Colosimo, G. Doumy, C.I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A.M. March, G.G. Paulus, H.G. Muller, P. Agostini, L.F. DiMauro, Scaling strong-field interactions towards the classical limit. Nat. Phys. 4, 386–389 (2008)

    Article  Google Scholar 

  23. S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré, R. Taïeb, P. Salières, Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200–206 (2010)

    Article  Google Scholar 

  24. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. Kieffer, P. Corkum, D. Villeneuve, Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004)

    Article  ADS  Google Scholar 

  25. M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic, H. Bandulet, H. Pépin, J. Kieffer, R. Dorner, D. Villeneuve, P. Corkum, Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008)

    Article  ADS  Google Scholar 

  26. E.E. Serebryannikov, A.M. Zheltikov, in preparation

    Google Scholar 

  27. A.M. Zheltikov, Optical phase-space modes, self-focusing, and the wavelength as tunable ħ. Phys. Scr. 90, 128003 (2015)

    Article  ADS  Google Scholar 

  28. V.A. Fock, Electromagnetic Diffraction and Propagation Problems (Pergamon, London, 1965)

    Google Scholar 

  29. J.A. Arnaud, Beam and Fiber Optics (Academic Press, New York, 1976)

    Google Scholar 

  30. D. Marcuse, Light Transmission Optics, 2nd edn. (Van Nostrand Reinhold, New York, 1982)

    Google Scholar 

  31. R.W. Boyd, S.G. Lukishova, Y.R. Shen, Self-focusing: Past and Present. Fundamentals and Prospects (Springer, New York, 2009)

    Google Scholar 

  32. Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984)

    Google Scholar 

  33. J.H. Marburger, Self-focusing: Theory. Prog. Quantum Electron. 4, 35–110 (1975)

    Article  ADS  Google Scholar 

  34. A.M. Zheltikov, Self-focusing and spatial modes in free space and nonlinear waveguides. Phys. Rev. A 88, 063847 (2013)

    Article  ADS  Google Scholar 

  35. A.B. Fedotov, S.M. Gladkov, N.I. Koroteev, A.M. Zheltikov, Highly efficient frequency tripling of laser radiation in a low-temperature laser-produced gaseous plasma. J. Opt. Soc. Am. B 8, 363–366 (1991)

    Article  ADS  Google Scholar 

  36. P.B. Corkum, F. Krausz, Attosecond science. Nat. Phys. 3, 381–387 (2007)

    Article  Google Scholar 

  37. E.E. Serebryannikov, A.M. Zheltikov, Subcycle waveform generation by nonrecolliding tunneling electron wave packets. Phys. Rev. A 90, 043811 (2014)

    Article  ADS  Google Scholar 

  38. A. Brown, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75 (1995)

    Article  ADS  Google Scholar 

  39. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  ADS  Google Scholar 

  40. L. Berge, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007)

    Article  ADS  Google Scholar 

  41. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, L. Wöste, White-light filaments for atmospheric analysis. Science 301(5629), 61–64

    Google Scholar 

  42. S. Tzortzakis, B. Lamouroux, A. Chiron, S.D. Moustaizis, D. Anglos, M. Franco, B. Prade, A. Mysyrowicz, Femtosecond and picosecond ultraviolet laser filaments in air: experiments and simulations. Opt. Commun. 197, 131–143 (2001)

    Article  ADS  Google Scholar 

  43. B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, O. Vasseur, Spatial mode cleaning by femtosecond filamentation in air. Opt. Lett. 31, 2601–2603 (2006)

    Article  ADS  Google Scholar 

  44. J.-F. Daigle, A. Jaron-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, S.L. Chin, Intensity clamping measurement of laser filaments in air at 400 and 800 nm. Phys. Rev. A 82, 023405 (2010)

    Article  ADS  Google Scholar 

  45. D. Mikalauskas, A. Dubietis, R. Danielius, Observation of light filaments induced in air by visible picosecond laser pulses. Appl. Phys. B 75, 899–902 (2002)

    Article  ADS  Google Scholar 

  46. A.V. Mitrofanov, A.A. Voronin, D.A. Sidorov-Biryukov, G. Andriukaitis, T. Flöry, A. Pugžlys, A.B. Fedotov, J.M. Mikhailova, V.Ya. Panchenko, A. Baltuška, A.M. Zheltikov, Post-filament self-trapping of ultrashort laser pulses. Opt. Lett. 39, 4659–4662 (2014)

    Article  ADS  Google Scholar 

  47. L. Haizer, I. Bugar, E. Serebryannikov, D. Lorenc, F. Uherek, E. Goulielmakis, A. Zheltikov, Intense Cr:forsterite-laser-based supercontinuum source. Opt. Lett. 39, 5562–5565 (2014)

    Article  ADS  Google Scholar 

  48. A.A. Voronin, S. Ališauskas, O.D. Mücke, A. Pugžlys, A. Baltuška, A.M. Zheltikov, High-energy-throughput pulse compression by off-axis group-delay compensation in a laser-induced filament. Phys. Rev. A 84, 023832 (2011)

    Article  ADS  Google Scholar 

  49. S. Driever, D. Bigourd, N. Fedorov, M. Cornet, M. Arnold, F. Burgy, S. Montant, S. Petit, D. Descamps, E. Cormier, E. Constant, A. Zaïr, Tunable 1.6–2 μm near infrared few-cycle pulse generation by filamentation. Appl. Phys. Lett. 102, 191119 (2013)

    Article  ADS  Google Scholar 

  50. C.P. Hauri, R.B. Lopez-Martens, C.I. Blaga, K.D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A.M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L.F. DiMauro, E.P. Power, Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament. Opt. Lett. 32, 868–870 (2007)

    Article  ADS  Google Scholar 

  51. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)

    Article  ADS  Google Scholar 

  52. G. Tempea, T. Brabec, Theory of self-focusing in a hollow waveguide. Opt. Lett. 23, 762–764 (1998)

    Article  ADS  Google Scholar 

  53. V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966)

    ADS  Google Scholar 

  54. A.A. Voronin, A.M. Zheltikov, T. Ditmire, B. Rus, G. Korn, Subexawatt few-cycle lightwave generation via multipetawatt pulse compression. Opt. Commun. 291, 299–303 (2013)

    Article  ADS  Google Scholar 

  55. P.A. Zhokhov, A.M. Zheltikov, Attosecond shock waves. Phys. Rev. Lett. 110, 183903 (2013)

    Google Scholar 

  56. A.A. Voronin, A.M. Zheltikov, Subcycle soliton breathers. Phys. Rev. A 4, 043807 (2014)

    Article  ADS  Google Scholar 

  57. A.B. Fedotov, N.I. Koroteev, M.M.T. Loy, X. Xiao, A.M. Zheltikov, Saturation of third-harmonic generation in a plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses. Opt. Commun. 133, 587–595 (1997)

    Article  ADS  Google Scholar 

  58. M. Jahjah, W. Jiang, N.P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S.C. Herndon, R.J. Griffin, F.K. Tittel, Atmospheric CH4 and N2O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013. Opt. Lett. 39, 957–960 (2014)

    Article  ADS  Google Scholar 

  59. S. Liakat, K.A. Bors, L. Xu, C.M. Woods, J. Doyle, C.F. Gmachl, Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomed. Opt. Express 5, 2397–2404 (2014)

    Article  Google Scholar 

  60. J. Wegener, R.H. Wilson, H.S. Tapp, Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods. Trends Anal. Chem. 18, 85–93 (1999)

    Article  Google Scholar 

  61. M.J. Nasse, M.J. Walsh, E.C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, C.J. Hirschmugl, High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat. Methods 8, 413–416 (2011)

    Article  Google Scholar 

  62. M.C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D.Y. Parkinson, H.A. Bechtel, B. Illman, J.M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M.J. Nasse, C.J. Hirschmugl, 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Nat. Methods 10, 861–864 (2013)

    Article  Google Scholar 

  63. F. Silva, D.R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat. Commun. 3, 807 (2012)

    Article  ADS  Google Scholar 

  64. A.A. Lanin, A.A. Voronin, E.A. Stepanov, A.B. Fedotov, A.M. Zheltikov, Frequency-tunable sub-two-cycle 60-MW-peak-power free-space waveforms in the mid-infrared. Opt. Lett. 39, 6430–6433 (2014)

    Article  ADS  Google Scholar 

  65. C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang, Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 8, 830–834 (2014)

    Article  ADS  Google Scholar 

  66. R. Thomson, C. Leburn, D. Reid (eds.), Ultrafast Nonlinear Optics (Springer, New York, 2013)

    Google Scholar 

  67. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001)

    MATH  Google Scholar 

  68. M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N. Forget, A. Durécu, A. Couairon, A. Mysyrowicz, Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: a new regime of filamentation. Phys. Rev. Lett. 110, 115003 (2013)

    Article  ADS  Google Scholar 

  69. H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G.J. Stein, D. Weerawarne, B. Shim, F.X. Kärtner, K.-H. Hong, 3-octave supercontinuum generation and sub-2-cycle self-compression of Mid-IR filaments in dielectrics, in Technical Digest of Meeting on Advanced Solid State Lasers (Optical Society of America, Washington, 2014), paper ATu5A.4

    Google Scholar 

  70. S. Ashihara, Y. Kawahara, Spectral broadening of mid-infrared femtosecond pulses in GaAs. Opt. Lett. 34, 3839–3841 (2009)

    Article  ADS  Google Scholar 

  71. M. Hemmer, M. Baudisch, A. Thai, A. Couairon, J. Biegert, Self-compression to sub-3-cycle duration of mid-infrared optical pulses in dielectrics. Opt. Express 21, 28095–28102 (2013)

    Article  ADS  Google Scholar 

  72. A. Pugzlys, P. Malevich, S. Alisauskas, A.A. Voronin, D. Kartashov, A. Baltuska, A. Zheltikov, D. Faccio, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, 2014), paper FTh1D.3

    Google Scholar 

  73. R.A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A.M. Weiner, M. Woerner, Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm. J. Opt. Soc. Am. B 17, 2086–2094 (2000)

    Article  ADS  Google Scholar 

  74. Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A.A. Voronin, A.M. Zheltikov, T. Fuji, Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases. Opt. Express 20, 24741–24747 (2012)

    Article  ADS  Google Scholar 

  75. D. Milam, M.J. Weber, A.J. Glass, Nonlinear refractive index of fluoride crystals. Appl. Phys. Lett. 31, 822–825 (1977)

    Article  ADS  Google Scholar 

  76. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, vol. 4, 3rd edn. (McGraw-Hill, New York, 2009)

    Google Scholar 

  77. A.A. Lanin, A.A. Voronin, A.B. Fedotov, A.M. Zheltikov, Time-domain spectroscopy in the mid-infrared. Sci. Rep. 4 (2014)

    Google Scholar 

  78. A.H. Zewail, Laser femtochemistry. Science 242, 1645–1653 (1988)

    Article  ADS  Google Scholar 

  79. B.G. Saar et al., Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010)

    Article  ADS  Google Scholar 

  80. W.W. Warren, H. Rabitz, M. Dahleh, Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  81. C.W. Freudiger et al., Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1860 (2008)

    Article  ADS  Google Scholar 

  82. P.N. Malevich et al., Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases. Opt. Express 20, 18784–18794 (2012)

    Article  ADS  Google Scholar 

  83. N. Dudovich, D. Oron, Y. Silberberg, Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002)

    Article  ADS  Google Scholar 

  84. J.L. Herek, W. Wohlleben, R.J. Cogdell, D. Zeidler, M. Motzkus, Quantum control of energy flow in light harvesting. Nature 417, 533–535 (2002)

    Article  ADS  Google Scholar 

  85. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007)

    Article  ADS  Google Scholar 

  86. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352–356 (2011)

    Article  ADS  Google Scholar 

  87. D.T. Reid, P. Loza-Alvarez, C.T.A. Brown, T. Beddard, W. Sibbett, Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating. Opt. Lett. 25, 1478–1480 (2000)

    Article  ADS  Google Scholar 

  88. G. Herzberg, Molecular Spectra and Molecular Structure: III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, Princeton, NJ, 1966)

    Google Scholar 

  89. L.S. Rothman, R.L. Hawkins, R.B. Watson, R.R. Gamache, Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands. J. Quant. Spectrosc. Radiat. Transf. 48, 537–551 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei M. Zheltikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheltikov, A.M. (2019). Ultrafast Nonlinear Optics in the Mid-Infrared. In: Boyd, R., Lukishova, S., Zadkov, V. (eds) Quantum Photonics: Pioneering Advances and Emerging Applications. Springer Series in Optical Sciences, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-98402-5_10

Download citation

Publish with us

Policies and ethics