Skip to main content

Parallel Clustering Validation Based on MapReduce

  • Conference paper
  • First Online:
Advances in Computing Systems and Applications (CSA 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 50))

Included in the following conference series:

Abstract

In this work, we developed and experimentally validated a novel model for external clustering validation to deal with huge data sets using Conditional Entropy index. The model allows clustering validation in a parallel and a distributed manner using Map-Reduce framework, it is termed MR-Centropy. The aim is to be able to scale with increasing dataset sizes when ground truth clustering is available. The proposed MR-Centropy is a three-jobs process where each job consists of Map and Reduce functions. Three jobs were necessary to gather all the statistics involved in the computation of the Conditional Entropy index. Each step in the proposed framework is done in parallel. Numerical tests on real and synthetic datasets demonstrate the effectiveness of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson, I., Ravi, S.S., Shamis, L.: A SAT-based framework for efficient constrained clustering. In: The Proceedings of the 10th SIAM International Conference on Data Mining, pp. 94–105 (2010)

    Google Scholar 

  2. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematics, Statistics and Probability, pp 281–296 (1967)

    Google Scholar 

  3. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD), Portland, pp. 226–231 (1996)

    Google Scholar 

  4. Wang, W., Yang, J., Muntz, R.: STING: a statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB), pp. 186–195. Morgan Kaufmann Publishers, Athens (1997)

    Google Scholar 

  5. Tian, Z., Raghu, R., Miron, L.: BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the Conference of Data Management, pp. 103–114. ACM SIGMOD, Montreal (1996)

    Google Scholar 

  6. Xiong, H., Li, Z.: Clustering validation measures. In: Aggarwal, C.C., Reddy, C.K. (eds.). Data Clust. Algorithms Appl., vol. 43(3), pp. 571–605. CRC, Boca Raton (2014)

    Google Scholar 

  7. Santibanez, M., Valdovinos, R.-M., Truebam, A., Rendon, E., Alejo, R., Lopez, E.: Applicability of cluster validation indexes for large data sets. In: The 12th Mexican International Conference on Artificial Intelligence, pp. 187–193. IEEE, Mexico (2013)

    Google Scholar 

  8. Campo, D.N., Stegmayer, G., Milone, D.H.: A new index for clustering validation with overlapped clusters, pp. 549–556. Elsevier (2016)

    Google Scholar 

  9. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17(2/3), 107–145 (2001)

    Google Scholar 

  10. Wu, J., Xiong, H., Chen, J.: Adapting the right measures for k-means clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris France, pp. 877–886 (2009)

    Google Scholar 

  11. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J., Wu, S.: Understanding and enhancement of internal clustering validation measures. IEEE Trans. Cybernet. 43(3), 982–993 (2013)

    Google Scholar 

  12. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)

    Article  Google Scholar 

  13. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Patt Anal. Mach. Intell. 2, 224–227 (1979)

    Google Scholar 

  14. Dunn, J.: Well separated clusters and optimal fuzzy partitions. J. Cybernet. Syst. 4(1), 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  15. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  16. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Int. J. Comput. Commun. 5(1), 27–34 (2011)

    Google Scholar 

  17. Zaki Mohamed, J., Wagner, M.J.R.: Data Mining and Analysis, 1st edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  18. Zerabi, S., Meshoul, S., Merniz, A., Melal, R.: Towards clustering validation in big data context. In: Proceedings of the 2nd International Conference on Big Data, Cloud and Applications, pp. 28–33. ACM, Tetouan (2017)

    Google Scholar 

  19. Zerabi, S., Meshoul, S.: External clustering validation in Big Data context. In: Proceedings of the 3nd International Conference on Cloud Computing Technologies and Applications. IEEE, Rabat Morocco (2017)

    Google Scholar 

  20. Apache Hadoop. http://hadoop.apache.org/. Accessed 12 Aug 2017

  21. White, T.: Hadoop: The Definitive Guide Storage and Analysis at Internet Scale, 4th edn. O’Reilly Media, Sebastopol (2015)

    Google Scholar 

  22. Oussous, A., Benjelloun, F.Z., AitLahcen, A., Belfkih, S.: Big data technologies: a survey. J. King Saud Univ. Comput. Inf. Sci. (2017)

    Google Scholar 

  23. Chullipparambil, C.P.: Big data analytics using hadoop tools. Ph.D. thesis San Diego State University (2016)

    Google Scholar 

  24. White, T.: Hadoop: The Definitive Guide, 3rd edn. O’Reilly Media, Sebastopol (2012)

    Google Scholar 

  25. Ibrahim, A., Hashem, T., Anuar, N.B., Gani, A., Yaqoob, I., Xia, F., Khan, S.U.: MapReduce: review and open challenges. Scientometrics 109, 389–422 (2016)

    Google Scholar 

  26. Ha, L.K., Hyansik, C., Bongki, M., Lee, Y.J., Chung, Y.D.: Parallel data processing with MapReduce: a survey. SIGMOD Rec. 40(4), 11–20 (2011)

    Google Scholar 

  27. Machine learning repository. http://archive.ics.uci.edu/ml/datasets.html

  28. Handl, J., Knowles, J.: Improvements to the scalability of multi objective clustering. IEEE Congr. Evol. Comput. 3, 2372–2379 (2005)

    Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Research Project CNEPRU under grant N: B*07120140037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumeya Zerabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zerabi, S., Meshoul, S., Khantoul, B. (2019). Parallel Clustering Validation Based on MapReduce. In: Demigha, O., Djamaa, B., Amamra, A. (eds) Advances in Computing Systems and Applications. CSA 2018. Lecture Notes in Networks and Systems, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-98352-3_31

Download citation

Publish with us

Policies and ethics