Skip to main content

A Benchmark of Motion Detection Algorithms for Static Camera: Application on CDnet 2012 Dataset

  • Conference paper
  • First Online:
Advances in Computing Systems and Applications (CSA 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 50))

Included in the following conference series:

  • 539 Accesses

Abstract

The main aim behind this study relates to comparing a variety of motion detection methods for a mono static camera and it endeavors to identify the best method for different environments and complex backgrounds whether in indoor or outdoor scenes. For this reason, we used the CDnet 2012 video dataset as a benchmark that comprises numerous challenging problems, ranging from basic simple scenes to complex scenes affected by shadows and dynamic backgrounds. Eleven ranging from simple to complex motion detection methods are tested and several performance metrics are used to achieve a precise evaluation of the results. This study sets its objective to enable any user to identify the best method that suits his/her need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( I_{t} (x,y) \) :

Pixel coordinates \( (x,y) \) in the current image \( I_{t} \).

\( Th, \, T \) :

Threshold values.

\( U \) :

The energy function.

\( U_{m} \) :

Energy that ensures spatio-temporal homogeneity.

\( U_{a} \) :

The adequacy energy that ensures good coherence of the solution compared to the observed data.

\( c(s,r) \) :

Denotes a set of binary cliques associated with the chosen neighbourhood system.

\( B_{t} (x,y) \) :

Pixel coordinates \( (x,y) \) in the background image \( B_{t} \).

\( \alpha \), \( \rho \):

Learning rates.

\( \left( {\mu ,\sigma } \right) \) :

Mean and standard deviation of Gaussian distribution.

\( \omega_{k,t} \) :

The estimated weight associated with the kth Gaussian at time \( t \).

\( D \) :

Deviation threshold.

\( H_{x,y,q} \) :

Spatio-temporal histogram for each pixel.

\( P_{x,y,q} \) :

Probability density functions for each pixel.

\( E_{x,y} \) :

The entropy of the pixel \( (x,y) \).

\( \Phi \) :

Quantization function quantizes the 256 grey level values into Q grey levels.

\( ES \) :

Eigen-space formed using N reshaped frames.

\( C \) :

Covariance matrix.

\( V,V_{M} \) :

The eigenvector matrix. The M eigenvectors in \( V \) that correspond to the M largest eigenvalues.

References

  1. Kim, I., Choi, H., Yi, K., Choi, J., Kong, S.: Intelligent visual surveillance — a survey. Int. J. Control Autom. Syst. 8(5), 926–939 (2010)

    Article  Google Scholar 

  2. Paul, M., Haque, S., Chakraborty, S.: Human detection in surveillance videos and its applications - a review. EURASIP J. Adv. Sig. Process. 176(1), 1–16 (2013)

    Google Scholar 

  3. Ko T.: A survey on behavior analysis in video surveillance for homeland security applications. In: AIPR 2008, Washington, DC, USA (2008)

    Google Scholar 

  4. Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 (2004)

    Google Scholar 

  5. Migliore, D.A., Matteucci, M., Naccari, M.: A revaluation of frame difference in fast and robust motion detection. In: Proceedings of 4th ACM International Workshop on Video Surveillance and Sensor Networks (VSSN 2006), pp. 215–218. ACM, New York (2006)

    Google Scholar 

  6. Yalamanchili, S., Martin, W., Aggarwal, J.: Extraction of moving object descriptions via differencing. Comput. Vis. Graph. 18(2), 188–201 (1982)

    Google Scholar 

  7. Jain, R., Martin, W., Aggarwal, J.: Segmentation through the detection of changes due to motion. Comput. Vis. Graph. 11(1), 13–34 (1979)

    Google Scholar 

  8. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco (1981)

    Google Scholar 

  9. Horn, B., Schunck, B.: Determining optical flow: a retrospective. Artif. Intell. 59(1–2), 81–87 (1993)

    Article  Google Scholar 

  10. Bouwmans, T.: Recent advanced statistical background modeling for foreground detection – a systematic survey. Recent Pat. Comput. Sci. 4(3), 147–176 (2011)

    Google Scholar 

  11. Cheung, S., Kamath, C.: Robust background subtraction with foreground validation for urban traffic video. EURASIP J. Appl Sig. Process. 2005(14), 2330–2340 (2005)

    MATH  Google Scholar 

  12. Elhabian, S., El-Sayed, K., Ahmed, S.: Moving object detection in spatial domain using background removal techniques: state-of-art. Recent Pat. Comput. Sci. 1(1), 32–54 (2010)

    Article  Google Scholar 

  13. Sehairi, K., Chouireb, F., Meunier, J.: Comparison study between different automatic threshold algorithms for motion detection. In: 2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes, December 2015, pp. 1–8 (2015)

    Google Scholar 

  14. Hammami, M., Jarraya, S.K., Ben-Abdallah, H.: A comparative study of proposed moving object detection methods. J. Next Gener. Inf. Technol. 2(2), 56–68 (2011)

    Article  Google Scholar 

  15. Toyama, K., Krumm, J., Brumitt, B., et al.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, September 1999, pp. 255–261 (1999)

    Google Scholar 

  16. Benezeth, Y., Jodoin, P.-M., Emile, B., et al.: Comparative study of background subtraction algorithms. J. Electron. Imag. 19(3), 033003 (2010)

    Google Scholar 

  17. Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11–12, 31–66 (2014)

    Article  Google Scholar 

  18. Sehairi, K., Chouireb, F., Meunier, J.: Comparative study of motion detection methods for video surveillance systems. J. Electron. Imag. 26(2), 023025 (2017). https://doi.org/10.1117/1.JEI.26.2.023025

    Article  Google Scholar 

  19. Goyette, N., Jodoin, P.-M., Porikli, F., et al.: Changedetection.net: a new change detection benchmark dataset. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, June 2012, pp. 1–8 (2012)

    Google Scholar 

  20. Wang, Z., Xiong, J., Zhang, Q.: Motion saliency detection based on temporal difference. J. Electron. Imag. 24(3), 033022-10 (2015)

    Google Scholar 

  21. Radzi, S.S.M., Yaakob, S.N., Kadim, Z., et al.: Extraction of moving objects using frame differencing, ghost and shadow removal. In: 2014 5th International Conference on Intelligence Systems, Modelling and Simulation, Langkawi, January 2014, pp. 229–234 (2014)

    Google Scholar 

  22. Chen, C., Zhang, X.: Moving vehicle detection based on union of three-frame difference. In: International Conference on Advances in Electronic Engineering, Communication and Management, vol. 140, pp. 459–64. Springer (2012)

    Google Scholar 

  23. Wang, Z.: Hardware implementation for a hand recognition system on FPGA. In: 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, Beijing, China, May 2015, pp. 34–38 (2015)

    Google Scholar 

  24. Zhang, Y., Wang, X., Qu, B.: Three-frame difference algorithm research based on mathematical morphology. Proc. Eng. 29, 2705–2709 (2012)

    Article  Google Scholar 

  25. Heikkilä, J., Silvén, O.: A real-time system for monitoring of cyclists and pedestrians. Image Vis. Comput. 22(7), 563–570 (2004)

    Article  Google Scholar 

  26. Tan, X., Li, J., Liu, C.: A video-based real-time vehicle detection method by classified background learning. World Trans. Eng. Technol. Educ. 6(1), 189–192 (2007)

    Google Scholar 

  27. Richefeu, J.C., Manzanera, A.: A new hybrid differential filter for motion detection. In: Computer Vision and Graphic. Computational Imaging and Vision, vol. 32, pp. 727–732. Springer, Dordrecht (2006)

    Google Scholar 

  28. Manzanera, A., Richefeu, J.: A new motion detection algorithm based on Σ-Δ background estimation. Pattern Recogn. Lett. 28(3), 320–328 (2007)

    Article  Google Scholar 

  29. Lacassagne, L., Manzanera, A., Denoulet, J.: High performance motion detection: some trends toward new embedded architectures for vision systems. J. Real-Time Image Proc. 4(2), 127–146 (2008)

    Article  Google Scholar 

  30. Bouthemy, P., Lalande, P.: Recovery of moving object masks in an image sequence using local spatiotemporal contextual information. Opt. Eng. 32(6), 1205 (1993)

    Google Scholar 

  31. Caplier, A., Luthon, F., Dumontier, C.: Real-time implementations of an MRF-based motion detection algorithm. Real-Time Imag. 4(1), 41–54 (1998)

    Article  Google Scholar 

  32. Denoulet, J., Mostafaoui, G., Lacassagne, L., et al.: Implementing motion Markov detection on general purpose processor and associative mesh. In: 7th International Workshop on Computer Architecture Machine Perception (CAMP 2005), pp. 288–293 (2005)

    Google Scholar 

  33. Wren, C., Azarbayejani, A., Darrell, T., et al.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  34. Tang, Z., Miao, Z., Wan, Y.: Background subtraction using running Gaussian average and frame difference. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds.) Proceedings of the 6th International Conference on Entertainment Computing (ICEC 2007), pp. 411–414. Springer, Berlin (2007)

    Google Scholar 

  35. Jabri, S., Duric, Z., Wechsler, H., et al.: Detection and location of people in video images using adaptive fusion of color and edge information. In: Proceedings of 15th International Conference on Pattern Recognition, Barcelona, vol. 4, pp. 627–630 (2000)

    Google Scholar 

  36. Stauffer, C., Grimson, E.: Adaptive background mixture models for real-time tracking. In: Proceedings of Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

  37. Bouwmans, T., El Baf, F., Vachon, B.: Background modeling using mixture of Gaussians for foreground detection - a survey. Recent Pat. Comput. Sci. 1(3), 219–237 (2008)

    Article  Google Scholar 

  38. Lumentut, J., Gunawan, F., Diana: Evaluation of recursive background subtraction algorithms for real-time passenger counting at bus rapid transit system. Proc. Comput. Sci. 59, 445–453 (2015)

    Google Scholar 

  39. Ma, Y-F., Zhang, H-J.: Detecting motion object by spatio-temporal entropy. In: IEEE International Conference on Multimedia and Expo, ICME 2001, Tokyo, Japan, August 2001, pp. 265–268 (2001)

    Google Scholar 

  40. Jing, G., Siong, C.E., Rajan, D.: Foreground motion detection by difference-based spatial temporal entropy image. In: Proceedings of 2004 IEEE Region 10 Conference (TenCon 2004), vol. 1, pp. 379–382. IEEE CS Press (2004)

    Google Scholar 

  41. Chang, M.C., Cheng, Y.J.: Motion detection by using entropy image and adaptive state-labeling technique. In: 2007 IEEE International Symposium on Circuits & Systems, New Orleans, LA, pp. 3667–3670 (2007)

    Google Scholar 

  42. Oliver, N., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

    Article  Google Scholar 

  43. Nikolov, B., Kostov, N., Yordanova, S.: Investigation of mixture of Gaussians method for background subtraction in traffic surveillance. Int. J. Reason. Based Intell. Syst. 5(3), 161–168 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Sehairi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sehairi, K., Fatima, C., Meunier, J. (2019). A Benchmark of Motion Detection Algorithms for Static Camera: Application on CDnet 2012 Dataset. In: Demigha, O., Djamaa, B., Amamra, A. (eds) Advances in Computing Systems and Applications. CSA 2018. Lecture Notes in Networks and Systems, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-98352-3_25

Download citation

Publish with us

Policies and ethics