Fundamental Work and a New Theory of Jupiter’s Satellites

  • Jan GuichelaarEmail author
Part of the Springer Biographies book series (SPRINGERBIOGS)


De Sitter was obsessed by gravitation during his whole working life. Till Einstein there was only Newton’s law of gravitation, giving the gravitational force Fg of two masses m1 and m2 on each other: Fg = Gm1m2/r2, in which r is the mutual distance and G the gravitational constant (a mass twice as big gives twice the force, a double distance gives a quarter of the force). With the help of the tools provided by the celestial mechanics De Sitter worked on the heliometer measurements of Gill, in order to deduce from them data of Jupiter’s moons.


  1. Bottlinger, C.F. (1912). ‘The explanation of the empirical parts of the movement of the moon by the assumption of an absorption of the gravitation in the inner parts of the earth’ (German: ‘Die Erklärung der empirischen Glieder der Mondbewegung durch die Annahme einer Extinktion der Gravitation im Erdinnern’); AN, 191, p. 147, 1912.Google Scholar
  2. Brouwer, D. (1927). Discussion of the observations of satellites I, II and III of Jupiter, made at Johannesburg by dr. R.T.A. Innes in the years1908–1925 (Dutch: Diskussie van de waarnemingen van satellieten I, II en III van Jupiter, gedaan te Johannesburg door dr. R.T.A. Innes in de jaren 1908–1925), E. IJdo, Leiden, 1927.Google Scholar
  3. Brouwer, D. (1928). ‘Discussions of observations of Jupiter’s satellites made at Johannesburg in the years 1908–1926’; AOL, XVI, Part 1, 1928.Google Scholar
  4. Brouwer, D. (1947). ‘Obituary J. Woltjer Jr.’; MNRAS, 107, pp. 59–60, 1947.Google Scholar
  5. Brouwer, D. (1963). ‘Review of Celestial Mechanics’; Annual Review of Astronomy and Astrophysics, 1, pp. from 219, 1963.Google Scholar
  6. Brouwer, D. (1965). ‘Relations among some important astronomical constants, The system of Astronomical Constants’; Proceedings of the IAU, edited by Jean Kovalevsky, pp. from 241, Gauthier-Villars, Paris, 1965.ADSCrossRefGoogle Scholar
  7. Burns, J.A., editor, (1977). Planetary Satellites, The University of Arizona Press, Tucson (Arizona, USA), 1977.Google Scholar
  8. De Sitter, W. (1907). ‘About periodical orbits of the Hestia type’ (Dutch: ‘Over periodieke banen van den Hestia-typus’); NAW2, XVI, pp. 35–44, May 1907.Google Scholar
  9. De Sitter, W. (1909). ‘About the periodical solutions of a special case of the four-body problem’ (Dutch: ‘Over de periodieke oplossingen van een speciaal geval van het vier-lichamenvraagstuk’; NAW2, XVII, pp. 752–769, February 1909.Google Scholar
  10. De Sitter, W. (1911). ‘On the Bearing of the Principle of Relativity on Gravitational Astronomy’; MNRAS, LXXI, 5, pp. 388–415, 1911.Google Scholar
  11. De Sitter, W. (1912). ‘Absorption of gravitation’; The Observatory, XXXV, 454, pp. 387–393, 1912.Google Scholar
  12. De Sitter, W. (1913a). ‘Absorption of gravitation and the length of the moon’ (Dutch: ‘Absorptie van gravitatie en de lengte van de maan’); NAW2, 21, pp. 737–752, pp. 1019–1035, 1913.Google Scholar
  13. De Sitter, W. (1913b). ‘Ein astronomischer Beweis für die Konstanz der Lichtgeschwindigkeit’; PZ, 14, p. 429, 1913.Google Scholar
  14. De Sitter, W. (1918). ‘Outlines of a New Mathematical Theory of Jupiter’s Satellites’; AOL, XII, Part 1, 1918.Google Scholar
  15. De Sitter, W. (1924). BAN, II, pp. from 109, 1924.Google Scholar
  16. De Sitter, W. (1925). ‘New mathematical Theory of Jupiter’s Satellites’, AOL, XII, Part 3, 1925.Google Scholar
  17. De Sitter, W. (1927a). ‘Summary of the results derived from a discussion of the longitudes of Jupiter’s satellites, with special reference to the rotation of the earth’; BAN, III, pp. 247–257, 1927.Google Scholar
  18. De Sitter, W. (1927b). ‘On the most probable values of some astronomical constants, first paper, constants connected with the earth’; BAN, IV, pp. 57–61, 1927.Google Scholar
  19. De Sitter, W. (1928). ‘Orbital elements determining the longitudes of Jupiter’s satellites, derived from observations’; AOL, XVI, Part 2, 1928.Google Scholar
  20. De Sitter, W. (1929). ‘Discussion of Old Eclipses of Jupiter’s Satellites’; AOL, XVI, Part 4, 1929.Google Scholar
  21. De Sitter, W. (1931). ‘George Darwin Lecture, delivered by Professor W. de Sitter, Assoc. RAS, on 1931 May 8’; MNRAS, XCI, 7, pp. 706–738, 1931.Google Scholar
  22. De Sitter, W. (1933). ‘In Memoriam’; Leidsch Dagblad, 26 September, 1933.Google Scholar
  23. De Sitter, W. (1938). ‘On the system of astronomical constants (edited and completed by Dirk Brouwer, with the aid of notes by W. de Sitter)’; BAN, VIII, pp. 213–231, 1938.Google Scholar
  24. Gill, D. (1913). A History of the Royal Observatory Cape of Good Hope, His Majesty’s Stationary Office, London, 1913.Google Scholar
  25. Kremer, P. (1923). Discussion of Micrometer Observations of Jupiter’s Satellites, Done in Washington in the years 1903–1906 (Dutch: Discussie van Micrometerwaarnemingen van de Satellieten van Jupiter, Gedaan in Washington in de jaren 1903–1906), Eduard IJdo, Leiden, 1923.Google Scholar
  26. Leckie, A.J. (1919). ‘Analytical and Numerical Theory or the Motions of The Orbital Planes of Jupiter’s Satellites: Secular Terms’; AOL, XII, Part 2, 1919.Google Scholar
  27. Lieske, J.H. (1982). In: Planetary Satellites (D. Morrison, editor), The University of Arizona Press, Tucson (Arizona, USA), 1982.Google Scholar
  28. Pyenson, L. (1989). Empire of reason. See References of chapter 1.Google Scholar
  29. Röhle, S. (2007). Willem de Sitter in Leiden - A chapter in the History of the Reception of the Relativity Theories, dissertation (German: Willem de Sitter in Leiden - Ein Kapitel in der Rezeptionsgeschichte der Relativitätstheorien), Johannes Gutenberg-Universität, Mainz, 2007. The dissertation of Röhle is a gold mine of relevant information about De Sitter.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.AmsterdamThe Netherlands

Personalised recommendations