Skip to main content

Unifying Reserve Design Strategies with Graph Theory and Constraint Programming

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11008))

  • 1561 Accesses

Abstract

The delineation of areas of high ecological or biodiversity value is a priority of any conservation program. However, the selection of optimal areas to be preserved necessarily results from a compromise between the complexity of ecological processes and managers’ constraints. Current reserve design models usually focus on few criteria, which often leads to an oversimplification of the underlying conservation issues. This paper shows that Constraint Programming (CP) can be the basis of a more unified, flexible and extensible framework. First, the reserve design problem is formalized. Secondly, the problem is modeled from two different angles by using two graph-based models. Then CP is used to aggregate those models through a unique Constraint Satisfaction Problem. Our model is finally evaluated on a real use case addressing the problem of rainforest fragmentation in New Caledonia, a biodiversity hotspot. Results are promising and highlight challenging perspectives to overtake in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gist.github.com/dimitri-justeau/8098af35824bbf8d52ef21282291e621.

References

  1. Beier, P., Spencer, W., Baldwin, R.F., McRAE, B.H.: Toward best practices for developing regional connectivity maps. Conserv. Biol. 25(5), 879–892 (2011)

    Article  Google Scholar 

  2. Baguette, M., Blanchet, S., Legrand, D., Stevens, V.M., Turlure, C.: Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88(2), 310–326 (2013)

    Article  Google Scholar 

  3. Haddad, N.M., et al.: Habitat fragmentation and its lasting impact on Earths ecosystems. Sci. Adv. 1(2), e1500052 (2015)

    Article  Google Scholar 

  4. Prendergast, J.R., Quinn, R.M., Lawton, J.H., Eversham, B.C., Gibbons, D.W.: Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365(6444), 335–337 (1993)

    Article  Google Scholar 

  5. Sarkar, S.: Environmental philosophy: from theory to practice. Stud. History Philos. Sci. Part C Stud. History Philos. Biol. Biomed. Sci. 45, 89–91 (2013)

    Article  Google Scholar 

  6. Pressey, R.L., Humphries, C.J., Margules, C.R., Vane-Wright, R.I., Williams, P.H.: Beyond opportunism: key principles for systematic reserve selection. Trends Ecol. Evol. 8(4), 124–128 (1993)

    Article  Google Scholar 

  7. ReVelle, C.S., Williams, J.C., Boland, J.J.: Counterpart models in facility location science and reserve selection science. Environ. Model. Assess. 7(2), 71–80 (2002)

    Article  Google Scholar 

  8. Billionnet, A.: Solving the probabilistic reserve selection problem. Ecol. Model. 222, 546–554 (2011)

    Article  Google Scholar 

  9. Watts, M.E., et al.: Marxan with Zones: software for optimal conservation based land- and sea-use zoning. Environ. Model. Softw. 24(12), 1513–1521 (2009)

    Article  Google Scholar 

  10. Diamond, J.M.: The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol. Conserv. 7(2), 129–146 (1975)

    Article  Google Scholar 

  11. Williams, J.C., ReVelle, C.S., Levin, S.A.: Spatial attributes and reserve design models: a review. Environ. Model. Assess. 10(3), 163–181 (2005)

    Article  Google Scholar 

  12. Billionnet, A.: Designing connected and compact nature reserves. Environ. Model. Assess. 21(2), 211–219 (2016)

    Article  Google Scholar 

  13. Dilkina, B., et al.: Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks. Conserv. Biol. 31(1), 192–202 (2017)

    Article  Google Scholar 

  14. Jafari, N., Nuse, B.L., Moore, C.T., Dilkina, B., Hepinstall-Cymerman, J.: Achieving full connectivity of sites in the multiperiod reserve network design problem. Comput. Oper. Res. 81, 119–127 (2017)

    Article  MathSciNet  Google Scholar 

  15. Rodrigues, A.S., Cerdeira, J.O., Gaston, K.J.: Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems. Ecography 23(5), 565–574 (2000)

    Article  Google Scholar 

  16. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation (2017)

    Google Scholar 

  17. Sahr, K., White, D., Kimerling, A.J.: Geodesic discrete global grid systems. Cartography Geogr. Inf. Sci. 30(2), 121–134 (2003)

    Article  Google Scholar 

  18. Birch, C.P.D., Oom, S.P., Beecham, J.A.: Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 206(3), 347–359 (2007)

    Article  Google Scholar 

  19. Guisan, A., Zimmermann, N.E.: Predictive habitat distribution models in ecology. Ecol. Model. 135(2), 147–186 (2000)

    Article  Google Scholar 

  20. Elith, J., Leathwick, J.R.: Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40(1), 677–697 (2009)

    Article  Google Scholar 

  21. Etienne, R.S., Heesterbeek, J.A.: On optimal size and number of reserves for metapopulation persistence. J. Theor. Biol. 203(1), 33–50 (2000)

    Article  Google Scholar 

  22. Dooms, G.: The CP(Graph) Computation Domain in Constraint Programming. Ph.D. thesis, UCL - Université Catholique de Louvain (2006)

    Google Scholar 

  23. Beldiceanu, N., Carlsson, M., Rampon, J.X., Truchet, C.: Graph Invariants as Necessary Conditions for Global Constraints. Swedish Institute of Computer Science (2005)

    Google Scholar 

  24. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Graph properties based filtering. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 59–74. Springer, Heidelberg (2006). https://doi.org/10.1007/11889205_7

    Chapter  Google Scholar 

  25. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global Constraint Catalog, 2nd edn., (Revision A). Swedish Institute of Computer Science (2012)

    Google Scholar 

  26. Fages, J.G., Prud’homme, C., Lorca, X.: Choco Graph Documentation, February 2018

    Google Scholar 

  27. Bockmayr, A., Pisaruk, N., Aggoun, A.: Network flow problems in constraint programming. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 196–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7_14

    Chapter  MATH  Google Scholar 

  28. Ibanez, T., Hequet, V., Chambrey, C., Jaffré, T., Birnbaum, P.: How does forest fragmentation affect tree communities? a critical case study in the biodiversity hotspot of New Caledonia. Landscape Ecol. 32(8), 1671–1687 (2017)

    Article  Google Scholar 

  29. Pouteau, R., et al.: Accounting for the indirect area effect in stacked species distribution models to map species richness in a montane biodiversity hotspot. Divers. Distrib. 21(11), 1329–1338 (2015)

    Article  Google Scholar 

  30. Schmitt, S., Pouteau, R., Justeau, D., Boissieu, F., Birnbaum, P.: SSDM: an R package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8(12), 1795–1803 (2017)

    Article  Google Scholar 

  31. Steiger, R., van Hoeve, W.J., Szymanek, R.: An efficient generic network flow constraint. In: Proceedings of the 2011 ACM Symposium on Applied Computing, SAC 2011, pp. 893–900. ACM, New York (2011)

    Google Scholar 

  32. Downing, N., Feydy, T., Stuckey, P.J.: Explaining flow-based propagation. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 146–162. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Justeau-Allaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Justeau-Allaire, D., Birnbaum, P., Lorca, X. (2018). Unifying Reserve Design Strategies with Graph Theory and Constraint Programming. In: Hooker, J. (eds) Principles and Practice of Constraint Programming. CP 2018. Lecture Notes in Computer Science(), vol 11008. Springer, Cham. https://doi.org/10.1007/978-3-319-98334-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98334-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98333-2

  • Online ISBN: 978-3-319-98334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics