Skip to main content

The Effect of Structural Measures and Merges on SAT Solver Performance

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11008))

Abstract

Over the years complexity theorists have proposed many structural parameters to explain the surprising efficiency of conflict-driven clause-learning (CDCL) SAT solvers on a wide variety of large industrial Boolean instances. While some of these parameters have been studied empirically, until now there has not been a unified comparative study of their explanatory power on a comprehensive benchmark. We correct this state of affairs by conducting a large-scale empirical evaluation of CDCL SAT solver performance on nearly 7000 industrial and crafted formulas against several structural parameters such as treewidth, community structure parameters, and a measure of the number of “mergeable” pairs of input clauses. We first show that while most of these parameters correlate well with certain sub-categories of formulas, only the merge-based parameters seem to correlate well across most classes of industrial instances. To further methodically test this connection, we perform a scaling study of mergeability of randomly-generated formulas and CDCL solver running time. We show that as the number of resolvable merge pairs are scaled up for randomly-generated instances while keeping most properties invariant, unsatisfiable instances show a very strong negative correlation with solver runtime. We further show that there is strong negative correlation between the size of learnt clauses and the number of merges as the number of merge pairs are scaled up. A take-away of our work is that mergeability might be a powerful complexity theoretic parameter with which to explain the unusual efficiency of CDCL SAT solvers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that in the resolution proof system, any resolvent of these clauses (e.g., \((x \vee y \vee \lnot y)\)) is effectively useless since it is tautologically true.

References

  1. The international SAT Competitions web page (2017). http://www.satcompetition.org/

  2. Andrews, P.B.: Resolution with merging. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 85–101. Springer, Heidelberg (1968). https://doi.org/10.1007/978-3-642-81955-1_6

    Chapter  Google Scholar 

  3. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: The fractal dimension of SAT formulas. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 107–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_8

    Chapter  Google Scholar 

  4. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_13

    Chapter  Google Scholar 

  5. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_31

    Chapter  MATH  Google Scholar 

  6. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS press (2009)

    Google Scholar 

  7. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoors to satisfiability: dynamic sub-solvers and learning during search. Ann. Math. Artif. Intell. 70(4), 399–431 (2014). https://doi.org/10.1007/s10472-014-9407-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Giráldez-Cru, J., Levy, J.: Locality in random sat instances. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017) (2017)

    Google Scholar 

  9. Godefroid, P., Levin, M.Y., Molnar, D.A., et al.: Automated whitebox fuzz testing. In: Network and Distributed System Security Symposium, pp. 151–166. Internet Society (2008)

    Google Scholar 

  10. Jordi, L.: On the classification of industrial SAT families. In: International Conference of the Catalan Association for Artificial Intelligence, p. 163. IOS Press (2015)

    Google Scholar 

  11. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: AAAI Conference on Artificial Intelligence, pp. 1368–1373. AAAI Press (2005)

    Google Scholar 

  12. Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K., Poupart, P.: Maple-COMSPS, mapleCOMSPS LRB, maplecomsps CHB. SAT Competition, p. 52 (2016)

    Google Scholar 

  13. Mateescu, R.: Treewidth in Industrial SAT Benchmarks (2011). http://research.microsoft.com/pubs/145390/MSR-TR-2011-22.pdf

  14. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic ‘phase transitions’. Nature 400(6740), 133–137 (1999)

    Article  MathSciNet  Google Scholar 

  15. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 252–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_20

    Chapter  MATH  Google Scholar 

  16. Pipatsrisawat, K., Darwiche, A.: A new clause learning scheme for efficient unsatisfiability proofs. In: AAAI Conference on Artificial Intelligence, pp. 1481–1484 (2008)

    Google Scholar 

  17. Pohl, R., Stricker, V., Pohl, K.: Measuring the structural complexity of feature models. In: Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering, pp. 454–464. IEEE Press (2013)

    Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J Comb Theor Series B 36(1), 49–64 (1984)

    Article  MathSciNet  Google Scholar 

  19. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 222–230. Springer, Heidelberg (2003). https://doi.org/10.1.1.128.5725

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Zulkoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zulkoski, E., Martins, R., Wintersteiger, C.M., Liang, J.H., Czarnecki, K., Ganesh, V. (2018). The Effect of Structural Measures and Merges on SAT Solver Performance. In: Hooker, J. (eds) Principles and Practice of Constraint Programming. CP 2018. Lecture Notes in Computer Science(), vol 11008. Springer, Cham. https://doi.org/10.1007/978-3-319-98334-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98334-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98333-2

  • Online ISBN: 978-3-319-98334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics