Skip to main content

Wide-Area Communication and Control: A Cyber-Physical Perspective

  • Chapter
  • First Online:
Smart Grid Control

Part of the book series: Power Electronics and Power Systems ((PEPS))

Abstract

For several decades, the traditional mindset for controlling large-scale power systems has been limited to local output feedback control, which means that controllers installed within the operating region of any utility company typically use measurements available only from inside that region for feedback, and, in fact, more commonly only from the vicinity of the controller location. Examples of such controllers include Automatic Voltage Regulators (AVR), Power System Stabilizers (PSS), Automatic Generation Control (AGC), FACTS control, HVDC, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.G. Phadke, J.S. Thorp, Synchronized Phasor Measurements and Their Applications (Springer, 2008)

    Google Scholar 

  2. N.R. Chaudhuri, D. Chakraborty, B. Chaudhuri, Damping control in power systems under constrained communication bandwidth: a predictor corrector strategy. IEEE Trans. Control Syst. Technol. 20(1), 223–231 (2012)

    Google Scholar 

  3. S. Zhang, V. Vittal, Design of wide-area power system damping controllers resilient to communication failures. IEEE Trans. Power Syst. 28(4) (2013)

    Article  Google Scholar 

  4. N.R. Chaudhuri, B. Chaudhuri, S. Ray, R. Majumder, Wide-area phasor power oscillation damping controller: a new approach to handling time-varying signal latency. IET Gener. Trans. Distrib. 4(5), 620–630 (2010)

    Article  Google Scholar 

  5. R.A. Jabr, B.C. Pal, N. Martins, A sequential conic programming approach for the coordinated and robust design of power system stabilizers. IEEE Trans. Power Syst. 25(3), 1627–1637 (2010)

    Article  Google Scholar 

  6. M. Zima, M. Larsson, P. Korba, C. Rehtanz, G. Andersson, Design aspects for wide-area monitoring and control systems. Proc. IEEE 93(5), 980–996 (2005)

    Article  Google Scholar 

  7. A. Chakrabortty, Wide-area damping control of power systems using dynamic clustering and TCSC-based redesigns. IEEE Trans. Smart Grid 2(3) (2012)

    Article  MathSciNet  Google Scholar 

  8. J.H. Chow, S.G. Ghiocel, An adaptive wide-area power system damping controller using synchrophasor data, in Control and Optimization Methods for Electric Smart Grids (2012), pp. 327–342

    Google Scholar 

  9. A. Jain, A. Chakrabortty, E. Biyik, An online structurally constrained LQR design for damping oscillations in power system networks, in American Control Conference, Seattle, WA (2017)

    Google Scholar 

  10. F. Dorfler, M. Jovanovic, M. Chertkov, F. Bullo, Sparsity-promoting optimal wide-area control of power networks. IEEE Trans. Power Syst. 29(5), 2281–2291 (2014)

    Article  Google Scholar 

  11. X. Wu, F. Dorfler, M. Jovanovic, Input-output analysis and decentralized optimal control of inter-area oscillations in power systems. IEEE Trans. Power Syst. 31(3), 2434–2444 (2016)

    Article  Google Scholar 

  12. M.E. Raoufat, K. Tomsovic, S.M. Djouadi, Virtual actuators for wide-area damping control of power systems. IEEE Trans. Power Syst. 31(6) (2016)

    Article  Google Scholar 

  13. C.W. Taylor, D.C. Erickson, K.E. Martin, R.W. Wilson, V. Venkatasubramanian, Wide-area stability and voltage control system: R&D and online demonstration. Proc. IEEE 93(5), 892–906 (2005)

    Article  Google Scholar 

  14. I. Kamwa, R. Grondin, Y. Hebert, Wide-area measurement based stabilizing control of large power systems–A decentralized/hierarchical approach. IEEE Trans. Power Syst. 16(1), 136–153 (2001)

    Article  Google Scholar 

  15. N.R. Chaudhuri, A. Domahidi, B. Chaudhuri, R. Majumder, P. Korba, S. Ray, K. Uhlen, Power oscillation damping control using wide-area signals: a case study on Nordic equivalent system, in IEEE PES T&D Conference and Exposition (2010)

    Google Scholar 

  16. R. Majumder, B.C. Pal, C. Dafour, P. Korba, Design and real-time implementation of robust FACTS controller for damping inter-area oscillation. IEEE Trans. Power Syst. 21(2), 809–816 (2006)

    Article  Google Scholar 

  17. C. Lu, X. Wu, J. Wu, P. Li, Y. Han, L. Li, Implementations and experiences of wide-area HVDC damping control in China Southern power grid, in Proceedings of the IEEE PES General Meeting, San Diego, CA (2012)

    Google Scholar 

  18. Y. Pipelzadeh, B. Chaudhuri, T.C. Green, Wide-area power oscillation damping control through HVDC: a case study on Australian equivalent system, in Proceedings of the IEEE PES General Meeting (2010)

    Google Scholar 

  19. E.M. Martinez, L. Vanfretti, F.R. Sevilla, Automatic triggering of the interconnection between Mexico and Central America using discrete control schemes, in IEEE PES ISGT Europe (2013)

    Google Scholar 

  20. A. Chakrabortty, P. Khargonekar, Introduction to wide-area monitoring and control, in American Control Conference, Washington DC (2013)

    Google Scholar 

  21. D. Soudbaksh, A. Chakrabortty, A. Annaswamy, Delay-aware codesigns for wide-area control of power grids, in 55th IEEE Conference on Decision and Control, Los Angeles, Dec 2014

    Google Scholar 

  22. N. Anh, L. Vanfretti, J. Driesen, D.V. Hertem, A Quantitative method to determine ICT delay requirements for wide-area power system damping controllers. IEEE Trans. Power Syst. 30(4), 2023–2030 (2015)

    Article  Google Scholar 

  23. North American Synchrophasor Initiative (NASPI), http://www.naspi.org

  24. M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, P. Tran-Gia, Modeling and performance evaluation of an openflow architecture, in Proceedings of the 23rd International Teletraffic Congress (2011)

    Google Scholar 

  25. P.M. Anderson, A.A. Fouad, Power System Control and Stability, 2nd edn. (Wiley Interscience, 2002)

    Google Scholar 

  26. A.K. Singh, B.C. Pal, Decentralized dynamic state estimation in power systems using unscented transformation. IEEE Trans. Power Syst. 29(2) (2014)

    Article  Google Scholar 

  27. A. Chakrabortty, J.H. Chow, A. Salazar, Interarea model estimation for radial power systems transfer paths with intermediate voltage control using synchronized phasor measurements. IEEE Trans. Power Syst. 24(3), 1318–1326 (2009)

    Article  Google Scholar 

  28. S. Malik, F. Huet, Virtual cloud: rent out the rented resources, in International Conference for Internet Technology and Secured Transactions (2011)

    Google Scholar 

  29. M. Wytock, Z. Kolter, A fast algorithm for sparse controller design (2013)

    Google Scholar 

  30. A.M. Boker, T.R. Nudell, A. Chakrabortty, On aggregate control of clustered consensus networks, in American Control Conference, Chicago, IL, USA (2015), pp. 5527–5532

    Google Scholar 

  31. T. Sadamoto, T. Ishizaki, J.I. Imura, Hierarchical distributed control for networked linear systems, in 53rd IEEE Conference on Decision and Control (2014), pp. 2447–2452

    Google Scholar 

  32. S. Hara, J.I. Imura, K. Tsumura, T. Ishizaki, T. Sadamoto, Glocal (global/local) control synthesis for hierarchical networked systems, in IEEE Conference on Control Applications (CCA) (2015), pp. 107–112

    Google Scholar 

  33. R. Harvey, Y. Xu, Z. Qu, T. Namerikawa, Dissipativity-based design of wide-area generation control for large-scale power systems with high penetration of renewables, in IEEE Conference on Control Technology and Applications, Kohala Coast, Hawaii, USA, Aug 2017

    Google Scholar 

  34. P.T. Myrda, J. Taft, P. Donner, Recommended approach to a NASPInet architecture, in 45th Hawaii International Conference on System Science (HICSS) (2012)

    Google Scholar 

  35. S. Nabavi, J. Zhang, A. Chakrabortty, Distributed optimization algorithms for wide-area oscillation monitoring in power systems using an inter-regional PMU-PDC architectures. IEEE Trans. Smart Grid 6(5), 2551–2559 (2015)

    Article  Google Scholar 

  36. J.G. Deshpande, K.C. Budka, M. Thottan, Communication Networks for Smart Grids (Springer, 2014)

    Google Scholar 

  37. D. Anderson, W.S. Cleveland, B. Xi, Multifractal and Gaussian fractional sum-difference models for internet traffic. Perform. Eval. 107 (2017)

    Article  Google Scholar 

  38. H. Wu, H. Ni, G.T. Heydt, The impact of time delay on robust control design in power systems. IEEE Power Eng. Soc. Winter Meet. 1511–1516 (2002)

    Google Scholar 

  39. J. He, C. Lu, X. Wu et al., Design and experiment of wide area HVDC supplementary damping controller considering time delay in CSG. IET Gener. Trans. Distrib. 3(1), 17–25 (2009)

    Article  Google Scholar 

  40. B. Chaudhuri, R. Majumder, B. Pal, Wide-area measurement-based stabilizing control of power system considering signal transmission delay. IEEE Trans. Power Syst. 19(4) (2004)

    Article  Google Scholar 

  41. J.W. Stahlhut, J. Browne, G.T. Heydt, V. Vittal, Latency viewed as a stochastic process. IEEE Trans. Power Syst. 23(1) (2008)

    Article  Google Scholar 

  42. A.M. Annaswamy, D. Soudbakhsh, R. Schneider, D. Goswami, S. Chakraborty, Arbitrated network control systems: a co-design of control and platform for cyber-physical systems, in Control of Cyber-Physical Systems. Lecture Notes in Control and Information Sciences, vol. 449, ed. by D.C. Tarraf (Springer International Publishing, 2013), pp. 339–356

    Google Scholar 

  43. S. Chakraborty, S. Künzli, L. Thiele, A general framework for analysing system properties in platform-based embedded system designs, in DATE (2003)

    Google Scholar 

  44. D. Soudbakhsh, L. Phan, O. Sokolsky, I. Lee, A. Annaswamy, Co-design of control and platform with dropped signals, in The 4th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS’13), April 2013

    Google Scholar 

  45. SmarTS Lab, Royal Institute of Technology (KTH), Sweden, https://github.com/SmarTS-Lab

  46. M. Chenine, L. Vanfretti, S. Bengtsson, L. Nordstrom, Implementation of an experimental wide-area monitoring platform for development of synchronized phasor measurement applications, in IEEE Power Energy Society General Meeting (2011)

    Google Scholar 

  47. A. Chakrabortty, Y. Xin, Hardware-in-the-loop simulations and verifications of smart power systems over an Exo-GENI Testbed, in Proceedings of the 2nd GENI Research and Educational Experiment Workshop, GREE-2013, Utah, March 2013

    Google Scholar 

  48. GridStat, www.gridstat.net

  49. T. Qian, F. Mueller, Y. Xin, A real-time distributed hash table, in IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA) (2014)

    Google Scholar 

  50. Stuxnet, https://en.wikipedia.org/wiki/Stuxnet

  51. National Cyber Security Awareness Month, https://www.it.iastate.edu/blog/view/36

  52. M. Liao, A. Chakrabortty, Optimization algorithms for catching data manipulators in power system estimation loops. IEEE Trans. Control Syst. Technol. (2018)

    Google Scholar 

  53. A. Jain, A. Chakrabortty, E. Biyik, Structurally constrained \(\ell _1\)-sparse control of power systems: online design and resiliency analysis, in Proceedings of American Control Conference, Milwaukee, WI, Jun 2018

    Google Scholar 

  54. A. Chakrabortty, A. Bose, Smart grid simulations and their supporting implementation methods. Proc. IEEE 105(11), 2220–2243 (2017)

    Article  Google Scholar 

  55. F. Pasqualetti, F. Dorfler, F. Bullo, Cyber-physical attacks in power networks: models, fundamental limitations and monitor design, in 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL (2011)

    Google Scholar 

  56. G. Dan, H. Sandberg, M. Ekstedt, G. Bjrkman, Challenges in power system information security. IEEE Secur. Priv. 10(4), 62–70 (2012)

    Article  Google Scholar 

  57. I. Nagel, Analog microelectronic emulation for dynamic power system computation. Ph.D. Thesis (EPFL, 2013)

    Google Scholar 

  58. S. Jin, Z. Huang, R. Diao, D. Wu, Y. Chen, Parallel implementation of power system dynamic simulation, in Proceedings of the IEEE PES General Meeting (2013)

    Google Scholar 

  59. E.J. Wyers, M. Steer, C. Kelley, P. Franzon, A bounded and discretized Nelder-Mead algorithm suitable for RFIC calibration. IEEE Trans. Circuits Syst. I: Regul. Pap. 60(7), 1787–1799 (2013)

    Article  MathSciNet  Google Scholar 

  60. Power Infrastructure Cybersecurity Laboratory, http://powercyber.ece.iastate.edu/penetintro.html

  61. TCIPG: Trustworthy Cyber Infrastructure for the Power Grid, https://tcipg.org

  62. The DETER Project, https://deter-project.org

  63. Global Network for Synchrophasor Solutions, http://gnssconsortium.org

  64. M.H. Cintuglu, O.A. Mohammed, K. Akkaya, A.S. Uluagac, A survey on smart grid cyber-physical system testbeds. IEEE Commun. Surv. Tutor. 19(1) (First Quarter, 2017)

    Article  Google Scholar 

  65. GENI, www.geni.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aranya Chakrabortty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakrabortty, A. (2019). Wide-Area Communication and Control: A Cyber-Physical Perspective. In: Stoustrup, J., Annaswamy, A., Chakrabortty, A., Qu, Z. (eds) Smart Grid Control. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-98310-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98310-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98309-7

  • Online ISBN: 978-3-319-98310-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics