Skip to main content

Distributed Design of Smart Grids for Large-Scalability and Evolution

  • Chapter
  • First Online:
Smart Grid Control

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 1865 Accesses

Abstract

Due to the massive complexity and organizational differences of future power grids, the notion of distributed design becomes more significant in a near future. The distributed design is a new notion of system design in which we individually design local subsystems and independently connect each of them to a preexisting system. In this article, we discuss challenges and opportunities for solving problems of the distributed design of smart grids so that they are flexible to incorporate regional and organizational differences, resilient to undesirable incidents, and able to facilitate addition and modifications of grid components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Institute of Standards and Technology (NIST): NIST Framework and Roadmap for smart grid interoperability standards, Release 3.0 (2014), http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1108r3.pdf

  2. C. Langbort, J. Delvenne, Distributed design methods for linear quadratic control and their limitations. IEEE Trans. Auto. Control 55(9), 2085–2093 (2010)

    Article  MathSciNet  Google Scholar 

  3. N. Sandell, P. Varaiya, M. Athans, M. Safonov, Survey of decentralized control methods for large scale systems. IEEE Trans. Auto. Control 23(2), 108–128 (1978)

    Article  MathSciNet  Google Scholar 

  4. L. Bakule, Decentralized control: an overview. Ann. Rev. Control 32(1), 87–98 (2008)

    Article  Google Scholar 

  5. F.L. Lagarrigue, A. Annaswamy, S. Engell, A. Isaksson, P. Khargonekar, R.M. Murray, H. Nijmeijer, T. Samad, D. Tilbury, P. Van den Hof, Systems & control for the future of humanity, research agenda: current and future roles, impact and grand challenges. Ann. Rev. Control 1–64 (2017)

    Google Scholar 

  6. S. Eftekharnejad, V. Vittal, G.T. Heydt, B. Keel, J. Loehr, Impact of increased penetration of photovoltaic generation on power systems. IEEE Trans. Power Syst. 28(2), 893–901 (2013)

    Article  Google Scholar 

  7. B. Tamimi, C. Ca\(\tilde{\rm n}\)izares, K. Bhattacharya, System stability impact of large-scale and distributed solar photovoltaic generation: the case of Ontario, Canada. IEEE Trans. Sustain. Energy 4(3), 680–688 (2013)

    Article  Google Scholar 

  8. D. Wei, K. Ji, Resilient industrial control system (RICS): concepts, formulation, metrics, and insights, in Proceedings of International Symposium on Resilient Control Systems (2010), pp. 15–22

    Google Scholar 

  9. P. Kundur, N.J. Prabha, M.G. Lauby, Power system stability and control, vol. 7 (New York, McGraw-hill, 1994)

    Google Scholar 

  10. E.V. Larsen, D.A. Swann, Applying power system stabilizers Part ii: performance objectives and tuning concepts. IEEE Trans. Power Apparat. Syst. 3025–3033 (1981)

    Article  Google Scholar 

  11. V. Akhmatov, H. Knudsen, An aggregate model of a grid-connected, large-scale, offshore wind farm for power stability investigationsimportance of windmill mechanical system. Int. J. Electr. Power Energy Syst. 24(9), 709–717 (2002)

    Article  Google Scholar 

  12. T. Sadamoto, A. Chakrabortty, T. Ishizaki, J. Imura, Retrofit control of wind-integrated power systems. IEEE Trans. Power Syst. (in Press) (2017). https://doi.org/10.1109/TPWRS.2017.2750411

    Article  Google Scholar 

  13. S. Chandra, D. Gayme, A. Chakrabortty, Time-scale modeling of wind-integrated power systems. IEEE Trans. Power Syst. 31(6), 4712–4721 (2016)

    Article  Google Scholar 

  14. C.G. Rieger, D. Gertman, M. McQueen, Resilient control systems: next generation design research, in Proceedings of International Conference on Human System Interactions (2009), pp. 632–636

    Google Scholar 

  15. S. Baros, M. Ilić, Intelligent Balancing Authorities (iBAs) for transient stabilization of large power systems, in PES General Meeting|Conference & Exposition (2014), pp. 1–5

    Google Scholar 

  16. T. Ishizaki, T. Sadamoto, J. Imura, H. Sandberg, K.H. Johansson, Retrofit control: localization of controller design and mplementation, Automatica 95, 336–346 (2018)

    Article  MathSciNet  Google Scholar 

  17. D.P. Nedic, I. Dobson, D.S. Kirchen, B.A. Carreras, V.E. Lynch, Criticality in a cascading failure blackout model. Int. J. Electr. Power Energy Syst. 28(9), 627–633 (2006)

    Article  Google Scholar 

  18. S. Mei, X. Zhang, M. Cao, Power grid complexity (Springer Science & Business Media, 2011)

    Google Scholar 

  19. K. Urata, M. Inoue, S. Adachi, Passivity-based strategy for constructing large-scale and expanding network systems, in Proceedings of European Control Conference (2015), pp. 3554–3559

    Google Scholar 

  20. T. Sadamoto, T. Ishizaki, J. Imura, Hierarchical distributed design of stabilizing controllers for an evolving network system, in Proceedings of Conference on Decision and Control (2015), pp. 3337–3342

    Google Scholar 

Download references

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR15K1, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomonori Sadamoto or Jun-ichi Imura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadamoto, T., Ishizaki, T., Imura, Ji. (2019). Distributed Design of Smart Grids for Large-Scalability and Evolution. In: Stoustrup, J., Annaswamy, A., Chakrabortty, A., Qu, Z. (eds) Smart Grid Control. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-98310-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98310-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98309-7

  • Online ISBN: 978-3-319-98310-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics