Skip to main content

Mathematical Modeling Identification of Active Sites Interaction of Protein Molecules

  • Chapter
  • First Online:
Mathematical Modeling of Protein Complexes

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 696 Accesses

Abstract

In this chapter, two algorithms are developed: Algorithm 1 and Algorithm 2. Algorithm 1 was developed in order to search for the interaction of a polypeptide chain of a full-length protein with short active region. Algorithm 2 was developed to determine the most active sites of interaction between full-length proteins when dimers are formed in the direction from the N-terminus to C-terminus. Numerical calculations were made using proteins Mdm2, Nap1, P53.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. System Computer Biology. Monograph. Novosibirsk: Publishing House of the SB RAS (2008), 769 p

    Google Scholar 

  2. M.J. Betts, M.J. Sternberg, An analysis of conformational changes on proteinprotein association: implications for predictive docking. Protein Eng. 12, 271–283 (1999)

    Google Scholar 

  3. T.V. Pyrkov, I.V. Ozerov, E.D. Balitskaya, R.G. Efremov, Molecular docking: the role of non-valence interactions in the formation of protein complexes with nucleotides and peptides. Bioorganic Chem. 36(4), 482–492 (2010)

    Google Scholar 

  4. The Universal Protein Resource http://www.uniprot.org/

  5. D. Lane, A. Levine, P53 Research: the past thirty years and the next thirty years Cold. Spring. Harb. Perspect. Biol. 2(12) (2010)

    Google Scholar 

  6. S. Nag, J. Qin, K.S. Srivenugopal, M. Wang, R. Zhanga, The MDM2-p53 pathway revisited. J. Biomed. Res. 27(4), 254–271 (2013)

    Google Scholar 

  7. D.P. Lane, L.V. Crawford, T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979)

    Google Scholar 

  8. C.J. Sherr, F. McCormick, The RB and p53 pathways in cancer. Cancer Cell 2(2), 103–112 (2002)

    Google Scholar 

  9. T. Ozaki, A. Nakagawara, Role of p53 in cell death and human cancers. Cancers(Basel) 3(1), 994–1013 (2011)

    Google Scholar 

  10. J.T. Zilfou, S.W. Lowe, Tumor Suppressive Functions of p53 Cold. Spring. Harb. Perspect. Biol. 1(5) (2009)

    Google Scholar 

  11. Y. Qian, X. Chen, Senescence regulation by the p53 protein family. Methods Mol. Biol. 965, 37–61 (2013)

    Google Scholar 

  12. Y. Liu, M. Kulesz-Martin, p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis 22(6), 851–860 (2001)

    Google Scholar 

  13. M. Hassan, H. Watari, A. AbuAlmaaty, Y. Ohba, N. Sakuragi, Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014 (2014)

    Google Scholar 

  14. J. Loughery, M. Cox, L.M. Smith, D.W. Meek, Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic. Acids. Res. 42(12), 7666–7680 (2014)

    Google Scholar 

  15. P.A. Lazo, Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal 33, 49–58 (2017)

    Google Scholar 

  16. G.P. Zambetti (ed.), The p53 Tumor Suppressor Pathway and Cancer (Springer, Berlin, 2005)

    Google Scholar 

  17. M.A. McCoy, J.J. Gesell, M.M. Senior, D.F. Wyss, Flexible lid to the p53-binding domain of human Mdm2: implications for p53 regulation. Proc. Natl. Acad. Sci. U. S. A. 100(4), 1645–1648 (2003)

    Google Scholar 

  18. H. Liang, H. Atkins, et al., Genomic organisation of the human MDM2 oncogene and relationship to its alternatively spliced mRNAs. Gene 338(2), 217–223

    Google Scholar 

  19. T. Hamzehloie, M. Mojarrad, M. Hasanzadeh-Nazarabadi, S. Shekouhi, The role of tumor protein 53 mutations in common human cancers and targeting the murine double minute 2P53 interaction for cancer therapy. Iran. J. Med. Sci. 37(1), 3–8 (2012)

    Google Scholar 

  20. Y. Zhao, H. Yu, W. Hu, The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sin. (Shanghai) 46(3), 180–189 (2014)

    Google Scholar 

  21. P. Chene, Inhibition of the p53-MDM2 Interaction: targeting a protein-protein interface. Mol. Cancer. Res. 2(1), 20–28 (2004)

    Google Scholar 

  22. U.M. Mol, O. Petrenko, Molecular dynamic simulation insights into the normal state and restoration of p53 function. Mol. Cancer. Res. 1(14), 1001–1008 (2003)

    Google Scholar 

  23. P.H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A.J. Levine, N.P. Pavletich, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289), 948–953 (1996)

    Google Scholar 

  24. P.L. Leslie, H. Ke, Y. Zhang, The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization. J. Biol. Chem. 290(20), 12941–12950 (2015)

    Google Scholar 

  25. Y.J. Park, K. Luger, The structure of nucleosome assembly protein 1. Proc. Natl. Acad. Sci. USA 103(5), 1248–1253 (2006)

    Google Scholar 

  26. S.J. McBryant, Y.J. Park, S.M. Abernathy, P.J. Laybourn, J.K. Nyborg, K. Luger, Preferential binding of the histone (H3-H4)\(_2\) tetramer by NAP1 is mediated by the amino-terminal histone tails. J. Biol. Chem. 278(45), 44574–44583 (2003)

    Google Scholar 

  27. J. Zlatanova, C. Seebart, M. Tomschik, Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J. 21(7), 1294–1310 (2007)

    Google Scholar 

  28. https://www.rcsb.org/structure/5G2E

  29. L.L. Patrick, H. Ke, Z. Yanping, The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization. J. Biol. Chem. 290(20), 12941–12950 (2015)

    Google Scholar 

  30. S. Uldrijan, W.J. Pannekoek, K.H. Vousden, An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 26, 102–112 (2007)

    Google Scholar 

  31. M.V. Poyurovsky, C. Priest, A. Kentsis, K.L. Borden, Z.Q. Pan, N. Pavletich, C. Prives, The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26, 90–101 (2007)

    Google Scholar 

  32. Y. Zhao, A. Aguilar, D. Bernard, S. Wang, Small molecule inhibitors of MDM2-p53 and MDMX-p53 interactions as new cancer therapeutics. J. Med. Chem. 58(3), 1038–1052 (2015)

    Google Scholar 

  33. J. Chen, V. Marechal, A.J. Levine, Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13, 4107–4114 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Kulikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koshlan, T., Kulikov, K. (2018). Mathematical Modeling Identification of Active Sites Interaction of Protein Molecules. In: Mathematical Modeling of Protein Complexes. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-98304-2_5

Download citation

Publish with us

Policies and ethics