Skip to main content

Simulation in Critical Care

  • Chapter
  • First Online:

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

Abstract

Simulation in Critical Care provides a brief history of simulation in critical care, followed by a concise review of available data for simulation in that setting. Alsaied, Chipman, and Brunsvold review ways in which simulation has been used to train and refine skills frequently utilized in the intensive care unit such as airway management, including orotracheal and surgical intubation, cardiopulmonary resuscitation, thoracentesis and paracentesis, ultrasound, and ventilator management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tjomsland N, Baskett P, Asmund S. Laerdal. Resuscitation. 2002;53(2):115–9.

    Article  Google Scholar 

  2. Lowenstein SR, Hansbrough JF, Libby LS, Hill DM, Mountain RD, Scoggin CH. Cardiopulmonary resuscitation by medical and surgical house-officers. Lancet (London, England). 1981;2(8248):679–81.

    Article  CAS  Google Scholar 

  3. Wayne DB, Didwania A, Feinglass J, Fudala MJ, Barsuk JH, McGaghie WC. Simulation-based education improves quality of care during cardiac arrest team responses at an academic teaching hospital: a case-control study. Chest. 2008;133(1):56–61.

    Article  Google Scholar 

  4. DeVita MA, Schaefer J, Lutz J, Wang H, Dongilli T. Improving medical emergency team (MET) performance using a novel curriculum and a computerized human patient simulator. Qual Saf Health Care. 2005;14(5):326–31.

    Article  CAS  Google Scholar 

  5. Hoadley TA. Learning advanced cardiac life support: a comparison study of the effects of low- and high-fidelity simulation. Nurs Educ Perspect. 2009;30(2):91–5.

    PubMed  Google Scholar 

  6. Rodgers DL, Securro S Jr, Pauley RD. The effect of high-fidelity simulation on educational outcomes in an advanced cardiovascular life support course. Simul Healthc J Soc Simul Healthc. 2009;4(4):200–6.

    Article  Google Scholar 

  7. Adams AJ, Wasson EA, Admire JR, Pablo Gomez P, Babayeuski RA, Sako EY, et al. A comparison of teaching modalities and fidelity of simulation levels in teaching resuscitation scenarios. J Surg Educ. 2015;72(5):778–85.

    Article  Google Scholar 

  8. Lo BM, Devine AS, Evans DP, Byars DV, Lamm OY, Lee RJ, et al. Comparison of traditional versus high-fidelity simulation in the retention of ACLS knowledge. Resuscitation. 2011;82(11):1440–3.

    Article  Google Scholar 

  9. Yoo HB, Park JH, Ko JK. An effective method of teaching advanced cardiac life support (ACLS) skills in simulation-based training. Korean J Med Educ. 2012;24(1):7–14.

    Article  Google Scholar 

  10. Weidman EK, Bell G, Walsh D, Small S, Edelson DP. Assessing the impact of immersive simulation on clinical performance during actual in-hospital cardiac arrest with CPR-sensing technology: a randomized feasibility study. Resuscitation. 2010;81(11):1556–61.

    Article  Google Scholar 

  11. Han JE, Trammell AR, Finklea JD, Udoji TN, Dressler DD, Honig EG, et al. Evaluating simulation-based ACLS education on patient outcomes: a randomized, controlled pilot study. J Grad Med Educ. 2014;6(3):501–6.

    Article  Google Scholar 

  12. Demaria S Jr, Bryson EO, Mooney TJ, Silverstein JH, Reich DL, Bodian C, et al. Adding emotional stressors to training in simulated cardiopulmonary arrest enhances participant performance. Med Educ. 2010;44(10):1006–15.

    Article  Google Scholar 

  13. Hesselfeldt R, Kristensen MS, Rasmussen LS. Evaluation of the airway of the SimMan full-scale patient simulator. Acta Anaesthesiol Scand. 2005;49(9):1339–45.

    Article  CAS  Google Scholar 

  14. Nishisaki A, Donoghue AJ, Colborn S, Watson C, Meyer A, Brown CA 3rd, et al. Effect of just-in-time simulation training on tracheal intubation procedure safety in the pediatric intensive care unit. Anesthesiology. 2010;113(1):214–23.

    Article  Google Scholar 

  15. Tofil NM, Benner KW, Zinkan L, Alten J, Varisco BM, White ML. Pediatric intensive care simulation course: a new paradigm in teaching. J Grad Med Educ. 2011;3(1):81–7.

    Article  Google Scholar 

  16. Finan E, Bismilla Z, Campbell C, Leblanc V, Jefferies A, Whyte HE. Improved procedural performance following a simulation training session may not be transferable to the clinical environment. J Perinatol Off J California Perinatal Assoc. 2012;32(7):539–44.

    Article  CAS  Google Scholar 

  17. Garcia J, Coste A, Tavares W, Nuno N, Lachapelle K. Assessment of competency during orotracheal intubation in medical simulation. Br J Anaesth. 2015;115(2):302–7.

    Article  CAS  Google Scholar 

  18. Mosier JM, Malo J, Sakles JC, Hypes CD, Natt B, Snyder L, et al. The impact of a comprehensive airway management training program for pulmonary and critical care medicine fellows. A three-year experience. Ann Am Thorac Soc. 2015;12(4):539–48.

    Article  Google Scholar 

  19. Norman G, Dore K, Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Med Educ. 2012;46(7):636–47.

    Article  Google Scholar 

  20. Schebesta K, Spreitzgrabner G, Horner E, Hupfl M, Kimberger O, Rossler B. Validity and fidelity of the upper airway in two high-fidelity patient simulators. Minerva Anestesiol. 2015;81(1):12–8.

    CAS  PubMed  Google Scholar 

  21. Prottengeier J, Petzoldt M, Jess N, Moritz A, Gall C, Schmidt J, et al. The effect of a standardised source of divided attention in airway management: a randomised, crossover, interventional manikin study. Eur J Anaesthesiol. 2016;33(3):195–203.

    Article  Google Scholar 

  22. Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977;44(2):367–73.

    Article  CAS  Google Scholar 

  23. McCarthy MC, Ranzinger MR, Nolan DJ, Lambert CS, Castillo MH. Accuracy of cricothyroidotomy performed in canine and human cadaver models during surgical skills training. J Am Coll Surg. 2002;195(5):627–9.

    Article  Google Scholar 

  24. Friedman Z, You-Ten KE, Bould MD, Naik V. Teaching lifesaving procedures: the impact of model fidelity on acquisition and transfer of cricothyrotomy skills to performance on cadavers. Anesth Analg. 2008;107(5):1663–9.

    Article  Google Scholar 

  25. Melchiors J, Todsen T, Nilsson P, Wennervaldt K, Charabi B, Bottger M, et al. Preparing for emergency: a valid, reliable assessment tool for emergency cricothyroidotomy skills. Otolaryngol Head Neck Surg Off J Am Acad Otolaryngol Head Neck Surg. 2015;152(2):260–5.

    Article  Google Scholar 

  26. Wong DT, Prabhu AJ, Coloma M, Imasogie N, Chung FF. What is the minimum training required for successful cricothyroidotomy?: a study in mannequins. Anesthesiology. 2003;98(2):349–53.

    Article  Google Scholar 

  27. Siu LW, Boet S, Borges BC, Bruppacher HR, LeBlanc V, Naik VN, et al. High-fidelity simulation demonstrates the influence of anesthesiologists’ age and years from residency on emergency cricothyroidotomy skills. Anesth Analg. 2010;111(4):955–60.

    PubMed  Google Scholar 

  28. Boet S, Borges BC, Naik VN, Siu LW, Riem N, Chandra D, et al. Complex procedural skills are retained for a minimum of 1 yr after a single high-fidelity simulation training session. Br J Anaesth. 2011;107(4):533–9.

    Article  CAS  Google Scholar 

  29. Park CS, Stojiljkovic L, Milicic B, Lin BF, Dror IE. Training induces cognitive bias: the case of a simulation-based emergency airway curriculum. Simul Healthc J Soc Simul Healthc. 2014;9(2):85–93.

    Article  Google Scholar 

  30. Howes TE, Lobo CA, Kelly FE, Cook TM. Rescuing the obese or burned airway: are conventional training manikins adequate? A simulation study. Br J Anaesth. 2015;114(1):136–42.

    Article  CAS  Google Scholar 

  31. Kornblith LZ, Burlew CC, Moore EE, Haenel JB, Kashuk JL, Biffl WL, et al. One thousand bedside percutaneous tracheostomies in the surgical intensive care unit: time to change the gold standard. J Am Coll Surg. 2011;212(2):163–70.

    Article  Google Scholar 

  32. Massick DD, Powell DM, Price PD, Chang SL, Squires G, Forrest LA, et al. Quantification of the learning curve for percutaneous dilatational tracheotomy. Laryngoscope. 2000;110(2 Pt 1):222–8.

    Article  CAS  Google Scholar 

  33. Fiorelli A, Carelli E, Angioletti D, Orsini A, D’Elia A, Torino A, et al. A home-made animal model in comparison with a standard manikin for teaching percutaneous dilatational tracheostomy. Interact Cardiovasc Thorac Surg. 2015;20(2):248–53.

    Article  Google Scholar 

  34. Terragni P, Mascia L, Faggiano C, Tenaglia T, Morello E, Succo G, et al. A new training approach in endoscopic percutaneous tracheostomy using a simulation model based on biological tissue. Minerva Anestesiol. 2016;82(2):196–201.

    PubMed  Google Scholar 

  35. Barr J, Graffeo CS. Procedural experience and confidence among graduating medical students. J Surg Educ. 2016;73(3):466–73.

    Article  Google Scholar 

  36. Wayne DB, Cohen ER, Singer BD, Moazed F, Barsuk JH, Lyons EA, et al. Progress toward improving medical school graduates’ skills via a “boot camp” curriculum. Simul Healthc J Soc Simul Healthc. 2014;9(1):33–9.

    Article  Google Scholar 

  37. Cohen ER, Barsuk JH, Moazed F, Caprio T, Didwania A, McGaghie WC, et al. Making July safer: simulation-based mastery learning during intern boot camp. Acad Med J Assoc Am Med Coll. 2013;88(2):233–9.

    Article  Google Scholar 

  38. Lenchus JD. End of the “see one, do one, teach one” era: the next generation of invasive bedside procedural instruction. J Am Osteopath Assoc. 2010;110(6):340–6.

    PubMed  Google Scholar 

  39. Barsuk JH, Cohen ER, Vozenilek JA, O’Connor LM, McGaghie WC, Wayne DB. Simulation-based education with mastery learning improves paracentesis skills. J Grad Med Educ. 2012;4(1):23–7.

    Article  Google Scholar 

  40. Barsuk JH, Cohen ER, Feinglass J, Kozmic SE, McGaghie WC, Ganger D, et al. Cost savings of performing paracentesis procedures at the bedside after simulation-based education. Simul Healthc J Soc Simul Healthc. 2014;9(5):312–8.

    Article  Google Scholar 

  41. Wayne DB, Barsuk JH, O’Leary KJ, Fudala MJ, McGaghie WC. Mastery learning of thoracentesis skills by internal medicine residents using simulation technology and deliberate practice. J Hosp Med. 2008;3(1):48–54.

    Article  Google Scholar 

  42. Duncan DR, Morgenthaler TI, Ryu JH, Daniels CE. Reducing iatrogenic risk in thoracentesis: establishing best practice via experiential training in a zero-risk environment. Chest. 2009;135(5):1315–20.

    Article  Google Scholar 

  43. Barsuk JH, Cohen ER, Williams MV, Scher J, Feinglass J, McGaghie WC, et al. The effect of simulation-based mastery learning on thoracentesis referral patterns. J Hosp Med. 2016;11(11):792–5.

    Article  Google Scholar 

  44. Jiang G, Chen H, Wang S, Zhou Q, Li X, Chen K, et al. Learning curves and long-term outcome of simulation-based thoracentesis training for medical students. BMC Med Educ. 2011;11:39.

    Article  Google Scholar 

  45. Hardman JG, Bedforth NM, Ahmed AB, Mahajan RP, Aitkenhead AR. A physiology simulator: validation of its respiratory components and its ability to predict the patient’s response to changes in mechanical ventilation. Br J Anaesth. 1998;81(3):327–32.

    Article  CAS  Google Scholar 

  46. Bedforth NM, Hardman JG. Predicting patients’ responses to changes in mechanical ventilation: a comparison between physicians and a physiological simulator. Intensive Care Med. 1999;25(8):839–42.

    Article  CAS  Google Scholar 

  47. Takeuchi A, Abe T, Hirose M, Kamioka K, Hamada A, Ikeda N. Interactive simulation system for artificial ventilation on the internet: virtual ventilator. J Clin Monit Comput. 2004;18(5–6):353–63.

    Article  Google Scholar 

  48. Kuebler WM, Mertens M, Pries AR. A two-component simulation model to teach respiratory mechanics. Adv Physiol Educ. 2007;31(2):218–22.

    Article  Google Scholar 

  49. Keegan R, Henderson T, Brown G. Use of the virtual ventilator, a screen-based computer simulation, to teach the principles of mechanical ventilation. J Vet Med Educ. 2009;36(4):436–43.

    Article  Google Scholar 

  50. Schroedl CJ, Corbridge TC, Cohen ER, Fakhran SS, Schimmel D, McGaghie WC, et al. Use of simulation-based education to improve resident learning and patient care in the medical intensive care unit: a randomized trial. J Crit Care. 2012;27(2):219.e7–13.

    Article  Google Scholar 

  51. Singer BD, Corbridge TC, Schroedl CJ, Wilcox JE, Cohen ER, McGaghie WC, et al. First-year residents outperform third-year residents after simulation-based education in critical care medicine. Simul Healthc J Soc Simul Healthc. 2013;8(2):67–71.

    Article  Google Scholar 

  52. Jansson MM, Syrjala HP, Ohtonen PP, Merilainen MH, Kyngas HA, Ala-Kokko TI. Randomized, controlled trial of the effectiveness of simulation education: a 24-month follow-up study in a clinical setting. Am J Infect Control. 2016;44(4):387–93.

    Article  Google Scholar 

  53. Jansson MM, Ala-Kokko TI, Ohtonen PP, Merilainen MH, Syrjala HP, Kyngas HA. Human patient simulation education in the nursing management of patients requiring mechanical ventilation: a randomized, controlled trial. Am J Infect Control. 2014;42(3):271–6.

    Article  Google Scholar 

  54. Yee J, Fuenning C, George R, Hejal R, Haines N, Dunn D, et al. Mechanical ventilation boot camp: a simulation-based pilot study. Crit Care Res Prac. 2016;2016:4670672.

    Google Scholar 

  55. Arenas-Marquez H, Anaya-Prado R, Barrera-Zepeda LM, Gonzalez-Ojeda A. Complications of central venous catheters. Curr Opin Clin Nutr Metab Care. 2001;4(3):207–10.

    Article  CAS  Google Scholar 

  56. Hardy G, Campos A. Clinical and pharmaceutical management of deficiencies, excesses and infection with nutrition support. Curr Opin Clin Nutr Metab Care. 2001;4(3):197–200.

    Article  CAS  Google Scholar 

  57. Gable BD, Gardner AK, Celik DH, Bhalla MC, Ahmed RA. Improving bariatric patient transport and care with simulation. West J Emerg Med. 2014;15(2):199–204.

    Article  Google Scholar 

  58. Oriot D, Darrieux E, Boureau-Voultoury A, Ragot S, Scepi M. Validation of a performance assessment scale for simulated intraosseous access. Simul Healthc J Soc Simul Healthc. 2012;7(3):171–5.

    Article  Google Scholar 

  59. Shieh L, Go M, Gessner D, Chen JH, Hopkins J, Maggio P. Improving and sustaining a reduction in iatrogenic pneumothorax through a multifaceted quality-improvement approach. J Hosp Med. 2015;10(9):599–607.

    Article  Google Scholar 

  60. Barsuk JH, Cohen ER, Potts S, Demo H, Gupta S, Feinglass J, McGahghie WC, Wayne DB. Dissemination of a simulation-based mastery learning intervention reduces central line-associated bloodstream infections. BMJ Qual Saf. 2014;23(9):749–56.

    Article  Google Scholar 

  61. Werner HC, Vieira RL, Rempell RG, Levy JA. An educational intervention to improve ultrasound competency in ultrasound-guided central venous access. Pediatr Emerg Care. 2016;32(1):1–5.

    Article  Google Scholar 

  62. Nathwani JN, Fiers RM, Ray RD, Witt AK, Law KE, DiMarco S, et al. relationship between technical errors and decision-making skills in the junior resident. J Surg Educ. 2016;73:e84–90.

    Article  Google Scholar 

  63. Gardner AK, Abdelfattah K, Wiersch J, Ahmed RA, Willis RE. Embracing errors in simulation-based training: the effect of error training on retention and transfer of central venous catheter skills. J Surg Educ. 2015;72(6):e158–62.

    Article  Google Scholar 

  64. Varas J, Achurra P, Leon F, Castillo R, De La Fuente N, Aggarwal R, et al. Assessment of central venous catheterization in a simulated model using a motion-tracking device: an experimental validation study. Ann Surg Innov Res. 2016;10:2.

    Google Scholar 

  65. Clinkard D, Holden M, Ungi T, Messenger D, Davison C, Fichtinger G, et al. The development and validation of hand motion analysis to evaluate competency in central line catheterization. Acad Emerg Med Off J Soc Acad Emerg Med. 2015;22(2):212–8.

    Article  Google Scholar 

  66. McGraw R, Chaplin T, McKaigney C, Rang L, Jaeger M, Redfearn D, et al. Development and evaluation of a simulation-based curriculum for ultrasound-guided central venous catheterization. CJEM. 2016;18(6):405–13.

    Google Scholar 

  67. Diederich E, Mahnken JD, Rigler SK, Williamson TL, Tarver S, Sharpe MR. The effect of model fidelity on learning outcomes of a simulation-based education program for central venous catheter insertion. Simul Healthc J Soc Simul Healthc. 2015;10(6):360–7.

    Article  Google Scholar 

  68. Moureau N, Lamperti M, Kelly LJ, Dawson R, Elbarbary M, van Boxtel AJ, et al. Evidence-based consensus on the insertion of central venous access devices: definition of minimal requirements for training. Br J Anaesth. 2013;110(3):347–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Chipman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alsaied, O.A., Chipman, J.G., Brunsvold, M.E. (2019). Simulation in Critical Care. In: Stefanidis, D., Korndorffer Jr., J., Sweet, R. (eds) Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-98276-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98276-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98275-5

  • Online ISBN: 978-3-319-98276-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics