Regenerative Medicine in the Digital Age

  • Arthur AndréEmail author
Part of the Health Informatics book series (HI)


Regenerative medicine deals with the “process of replacing, engineering or regenerating human cells, tissues or organs to restore or establish normal function”. The development of information technology (IT) has allowed great advancements in this field of research with gene editing, signal transformation algorithms, 3D bioprinting, and anti-aging medicine. Therefore, stem cell therapy, gene therapy, human–machine interface, and 3D organ printing—all different aspects of regenerative medicine—are growing rapidly, thanks to emerging technologies.


Regenerative medicine Stem cells Gene therapy Brain–computer interface 3D printing Neurodegenerative disease 


  1. 1.
    Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.PubMedGoogle Scholar
  2. 2.
    Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:1.Google Scholar
  3. 3.
    Cerletti M, et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell. 2008;134(1):37–47.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ghodsizad A, et al. Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction. Heart. 2009;95(1):27–35.PubMedGoogle Scholar
  5. 5.
    Bruin J, et al. Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs. Stem Cell Rep. 2015;4(4):605–20.Google Scholar
  6. 6.
    Mandai M, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46. Scholar
  7. 7.
    Cameron K, et al. Serum-free directed differentiation of human embryonic stem cells to hepatocytes. Methods Mol Biol. 2015;1250:105–11.PubMedGoogle Scholar
  8. 8.
    Shroff G, Gupta R. Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann Neurosci. 2015;22(4):208–16.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun L, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 2010;62(8):2467–75.PubMedGoogle Scholar
  10. 10.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Cyranoski D. Japanese man is first to receive ‘reprogrammed’ stem cells from another person. Nature News. 2018.Google Scholar
  12. 12.
    Hacein-Bey-Abina S, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Cartier N, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818–23.PubMedGoogle Scholar
  14. 14.
    Mavilio F, Ferrari G. Genetic modification of somatic stem cells: the progress, problems and prospects of a new therapeutic technology. EMBO Rep. 2008;9:S64–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Naldini L. Medicine. A comeback for gene therapy. Science. 2009;326(5954):805–6.PubMedGoogle Scholar
  16. 16.
    Kempermann G, et al. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27(8):447–52.PubMedGoogle Scholar
  17. 17.
    Gage FH, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A. 1995;92(25):11879–83.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Suhonen JO, et al. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature. 1996;383(6601):624–7.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Windrem MS, et al. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell. 2008;2(6):553–65.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sheen VL, et al. Neural precursor differentiation following transplantation into neocortex is dependent on intrinsic developmental state and receptor competence. Exp Neurol. 1999;158(1):47–62.PubMedGoogle Scholar
  21. 21.
    Shihabuddin LS, et al. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci. 2000;20(23):8727–35.PubMedGoogle Scholar
  22. 22.
    Shetty AK, Hattiangady B. Concise review: prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells. 2007;25(10):2396–407.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Freed CR, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344(10):710–9.PubMedGoogle Scholar
  24. 24.
    Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci. 2009;30(5):260–7.PubMedGoogle Scholar
  25. 25.
    Olanow CW, Freeman T, Kordower J. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;345(2):146; author reply 147.PubMedGoogle Scholar
  26. 26.
    Dyson SC, Barker RA. Cell-based therapies for Parkinson’s disease. Expert Rev Neurother. 2011;11(6):831–44.PubMedGoogle Scholar
  27. 27.
    Barker RA, et al. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 2013;12(1):84–91.PubMedGoogle Scholar
  28. 28.
    Bachoud-Lévi AC, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 2006;5(4):303–9.PubMedGoogle Scholar
  29. 29.
    Hocquemiller M, et al. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 2016;27(7):478–96.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Temple S, Qian X. bFGF, neurotrophins, and the control or cortical neurogenesis. Neuron. 1995;15(2):249–52.PubMedGoogle Scholar
  31. 31.
    Jin K, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18):11946–50.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Chmielnicki E, et al. Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J Neurosci. 2004;24(9):2133–42.PubMedGoogle Scholar
  33. 33.
    Henry RA, Hughes SM, Connor B. AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci. 2007;25(12):3513–25.PubMedGoogle Scholar
  34. 34.
    Tuszynski MH, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med. 2005;11(5):551–5.PubMedGoogle Scholar
  35. 35.
    Paradiso B, et al. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc Natl Acad Sci U S A. 2009;106(17):7191–6.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Li SF, et al. Recombinant adeno-associated virus serotype 1-vascular endothelial growth factor promotes neurogenesis and neuromigration in the subventricular zone and rescues neuronal function in ischemic rats. Neurosurgery. 2009;65(4):771–9; discussion 779.PubMedGoogle Scholar
  37. 37.
    LeWitt PA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–19.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Herzog CD, et al. Enhanced neurotrophic distribution, cell signaling and neuroprotection following substantia nigral versus striatal delivery of AAV2-NRTN (CERE-120). Neurobiol Dis. 2013;58:38–48.PubMedGoogle Scholar
  39. 39.
    Palfi S, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383(9923):1138–46.PubMedGoogle Scholar
  40. 40.
    Bonifazi P, et al. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses. Front Neural Circuits. 2013;7:40.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lebedev MA, Nicolelis MA. Brain-machine interfaces: past, present and future. Trends Neurosci. 2006;29(9):536–46.PubMedGoogle Scholar
  42. 42.
    Mandonnet E, Duffau H. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces. Front Syst Neurosci. 2014;8:82.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Penfield W. Mechanisms of voluntary movement. Brain. 1954;77(1):1–17.PubMedGoogle Scholar
  45. 45.
    Hochberg LR, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–5.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Iacoboni M. Neural mechanisms of imitation. Curr Opin Neurobiol. 2005;15(6):632–7.PubMedGoogle Scholar
  47. 47.
    Schieber MH. Dissociating motor cortex from the motor. J Physiol. 2011;589(Pt 23):5613–24.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mikuni N, et al. Evidence for a wide distribution of negative motor areas in the perirolandic cortex. Clin Neurophysiol. 2006;117(1):33–40.PubMedGoogle Scholar
  49. 49.
    Berger TW, Song D, Chan RHM, Marmarelis VZ, LaCoss J, Wills J, Hampson RE, Deadwyler SA, Granacki JJ. A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Trans Neural Syst Rehabil Eng. 20(2):198–211.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Opris I, et al. Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits. 2012;6:88.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Izhikevich EM. Hybrid spiking models. Philos Trans A Math Phys Eng Sci. 2010;368(1930):5061–70.PubMedGoogle Scholar
  52. 52.
    Tessadori J, et al. Modular neuronal assemblies embodied in a closed-loop environment: toward future integration of brains and machines. Front Neural Circuits. 2012;6:99.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Brewer GJ, et al. Toward a self-wired active reconstruction of the hippocampal trisynaptic loop: DG-CA3. Front Neural Circuits. 2013;7:165.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Hanuschkin A, Ganguli S, Hahnloser RH. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models. Front Neural Circuits. 2013;7:106.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Skocik M, Kozhevnikov A. Real-time system for studies of the effects of acoustic feedback on animal vocalizations. Front Neural Circuits. 2012;6:111.PubMedGoogle Scholar
  56. 56.
    Molkov YI, et al. Control of breathing by interacting pontine and pulmonary feedback loops. Front Neural Circuits. 2013;7:16.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Chapin JK, et al. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci. 1999;2(7):664–70.PubMedGoogle Scholar
  58. 58.
    Perel S, et al. Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics. J Neurophysiol. 2015;114(3):1500–12.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science. 2002;296(5574):1829–32.PubMedGoogle Scholar
  60. 60.
    Wessberg J, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000;408(6810):361–5.PubMedGoogle Scholar
  61. 61.
    Kennedy PR, et al. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng. 2000;8(2):198–202.PubMedGoogle Scholar
  62. 62.
    Levine SP, et al. Identification of electrocorticogram patterns as the basis for a direct brain interface. J Clin Neurophysiol. 1999;16(5):439–47.PubMedGoogle Scholar
  63. 63.
    Fernandez-Vargas J, et al. Assisted closed-loop optimization of SSVEP-BCI efficiency. Front Neural Circuits. 2013;7:27.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Chaudhary U, Xia B, Silvoni S, Cohen LG, Birbaumer N. Brain–computer interface–based communication in the completely locked-in state. PLoS Biol. 2017;15(1):e1002593. Scholar
  65. 65.
    Pandarinath C, et al. High performance communication by people with paralysis using an intracortical brain-computer interface. Elife. 2017; 6. pii: e18554.Google Scholar
  66. 66.
    Chaudhary U, Birbaumer N, Curado MR. Brain-machine interface (BMI) in paralysis. Ann Phys Rehabil Med. 2015;58(1):9–13.PubMedGoogle Scholar
  67. 67.
    Jacobs J, Miller J, Lee SA, Coffey T, Watrous AJ, Sperling MR, Sharan A, Worrell G, Berry B, Lega B, Jobst BC, Davis K, Gross RE, Sheth SA, Ezzyat Y, Das SR, Stein J, Gorniak R, Kahana MJ, Rizzuto DS. Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron. 2016;92(5):983–90.PubMedGoogle Scholar
  68. 68.
    Hampson RE, Song D, Robinson BS, Fetterhoff D, Dakos AS, Roeder BM, She X, Wicks RT, Witcher MR, Couture DE, Laxton AW, Munger-Clary H, Popli G, Sollman MJ, Whitlow CT, Marmarelis VZ, Berger TW, Deadwyler SA. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. J Neural Eng. 2018;15(3):036014.PubMedGoogle Scholar
  69. 69.
    Suthana N, Fried I. Deep brain stimulation for enhancement of learning and memory. NeuroImage. 2014;85:996–1002.PubMedGoogle Scholar
  70. 70.
    Lee VK, Dai G. Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine. Ann Biomed Eng. 2017;45(1):115–31.PubMedGoogle Scholar
  71. 71.
    Zhang YS, et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann Biomed Eng. 2017;45(1):148–63.PubMedGoogle Scholar
  72. 72.
    Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.PubMedGoogle Scholar
  73. 73.
    Mesko, B. @berci. The ultimate list of what we can 3D print in medicine and healthcare! – The Medical Futurist 2017.Google Scholar
  74. 74.
    @harvard. The Harvard Gazette Creating 3-D tissue and its potential for regeneration. 2016.Google Scholar
  75. 75.
    Tarafder S, Bose S. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl Mater Interfaces. 2014;6(13):9955–65.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Tarafder S, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med. 2013;7(8):631–41.PubMedGoogle Scholar
  77. 77.
    Crawford M. Creating valve tissue using 3-D bioprinting. ASME 2013.Google Scholar
  78. 78.
    Lee H, et al. Cell(MC3T3-E1)-printed poly(−caprolactone)/alginate hybrid scaffolds for tissue regeneration. Macromol Rapid Commun. 2013;34(2):142–9.PubMedGoogle Scholar
  79. 79.
    Scott C. Wake forest institute for regenerative medicine progresses with 3D printed skin technology. 2017.Google Scholar
  80. 80.
    Scott C. Chinese researchers believe they can make 3D printed skin a reality in two to three years. Aug 5, 2016|3D 2016.Google Scholar
  81. 81.
    Clegg A, et al. Frailty in elderly people. Lancet. 2013;381(9868):752–62.PubMedGoogle Scholar
  82. 82.
    Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20.PubMedGoogle Scholar
  83. 83.
    López-Otín C, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217.PubMedPubMedCentralGoogle Scholar
  84. 84.
    GenAge: the ageing gene database. 2018. Available from:
  85. 85.
    Pan F, et al. Gene Aging Nexus: a web database and data mining platform for microarray data on aging. Nucleic Acids Res. 2007;35(Database issue):D756–9.PubMedGoogle Scholar
  86. 86.
    gene db. 2018. Available from:
  87. 87.
    Burkle A, et al. MARK-AGE biomarkers of ageing. Mech Ageing Dev. 2015;151:2–12.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de ParisParisFrance
  2. 2.Sorbonne UniversitéParisFrance

Personalised recommendations