Skip to main content

Precision Medicine

  • Chapter
  • First Online:
Digital Medicine

Part of the book series: Health Informatics ((HI))

Abstract

Modelizing biology and life has always been a challenge to the modern scientific method due to the complexity of the components and interactions of a biological organization from the cell to a whole human body. Information technology (IT) offers the ability to treat and organize large amounts of data and leads to a paradigm of integration—in opposition to reduction—to explain biological systems and phenomenon. Quantitative datasets of DNA, RNA, proteins, and metabolites provide an unprecedented starting point to understand the effects of perturbations on a cell and, with addition of clinical tests and imaging, the effect on the whole body. The informational view of biology defines biological information—biomarker—as a given data integrated in a network. This leads to a “systems” approach to physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Systems biology. Wikipedia. 2018.

    Google Scholar 

  2. Sauer U, Heinemann M, Zamboni N. Getting closer to the whole picture. Science. 2007;316:550. https://doi.org/10.1126/science.1142502.

    Article  CAS  PubMed  Google Scholar 

  3. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117(4):500–44.

    Article  CAS  Google Scholar 

  4. Noble D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature. 1960;188:495–7. https://doi.org/10.1038/188495b0.

    Article  CAS  PubMed  Google Scholar 

  5. @ISBUSA. What is systems biology. Institute for Systems Biology; Seattle, 2018.

    Google Scholar 

  6. Rosen R. Systems theory and biology. In: Mesarović MD, editor. Proceedings of the 3rd systems symposium, Cleveland, Oct 1966. Springer, New York; 1968. xii + 403 p., illus. $16. 1968. https://doi.org/10.1126/science.161.3836.34

    Article  Google Scholar 

  7. Zewail A. Physical biology: from atoms to medicine. London: Imperial College Press. p. 339.

    Google Scholar 

  8. Human Genome Project. Wikipedia. 2018.

    Google Scholar 

  9. Zeng BJ. On the holographic model of human body. In: 1st national conference of comparative studies traditional Chinese medicine and west medicine, medicine and philosophy, 1992.

    Google Scholar 

  10. Kamada T. System biomedicine: a new paradigm in bio-medical engineering. Jpn J Med Electron Biol Eng. 1991;29(Supplement):1–1.

    Google Scholar 

  11. National Research Council Committee on a New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology R. The National Academies Collection: Reports funded by National Institutes of Health. A new biology for the 21st century: ensuring the United States leads the coming biology revolution. Washington, DC: National Academies Press (US)National Academy of Sciences; 2009.

    Google Scholar 

  12. National Research Council Committee on AFfDaNToD. The National Academies Collection: Reports funded by National Institutes of Health. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington, DC: National Academies Press (US)National Academy of Sciences; 2011.

    Google Scholar 

  13. Schadt EE, Linderman MD, Sorenson J, et al. Computational solutions to large-scale data management and analysis. Nat Rev Genet. 2010;11(9):647–57. https://doi.org/10.1038/nrg2857. [published Online First: 2010/08/19].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flores M, Glusman G, Brogaard K, et al. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med. 2013;10(6):565–76. https://doi.org/10.2217/pme.13.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sagner M, McNeil A, Puska P, et al. The P4 health spectrum – a predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog Cardiovasc Dis. 2017;59(5):506–21. https://doi.org/10.1016/j.pcad.2016.08.002. [published Online First: 2016/08/23].

    Article  PubMed  Google Scholar 

  16. Bengoechea JA. Infection systems biology: from reactive to proactive (P4) medicine. Int Microbiol. 2012;15(2):55–60. https://doi.org/10.2436/20.1501.01.158. [published Online First: 2012/08/01].

    Article  PubMed  Google Scholar 

  17. Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J Intern Med. 2012;271(2):111–21. https://doi.org/10.1111/j.1365-2796.2011.02498.x. [published Online First: 2011/12/07].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9(1):77–102. https://doi.org/10.1007/s13167-018-0128-8. [published Online First: 2018/03/09].

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fox S, Duggan M. Health online 2013. Washington, DC: Pew Internet & American Life Project; 2013. p. 1.

    Google Scholar 

  20. Picton G. Study shows promise in automated reasoning, hypothesis generation over complete medical literature 2018. Available from: https://www.bcm.edu/news/research/automated-reasoning-hypothesis-generation.

  21. Watts D, Newman M, Barabási, A. The structure and dynamics of networks Princeton studies in complexity Mathematics -Applied (Paperback and eBook). 2006.

    Google Scholar 

  22. Yan Q. Translational bioinformatics and systems biology methods for personalized medicine. 1st ed: PharmTao, Santa Clara, CA, USA; 2018.

    Google Scholar 

  23. Iris F. Biological modeling in the discovery and validation of cognitive dysfunctions biomarkers. In: Turck C, editor. Biomarkers for psychiatric disorders. Boston: Springer; 2008.

    Chapter  Google Scholar 

  24. Dodd MJ, Miaskowski C, Lee KA. Occurrence of symptom clusters. JNCI Monogr. 2018;2004(32):76–8. https://doi.org/10.1093/jncimonographs/lgh008.

    Article  Google Scholar 

  25. R. C. Partage de données biomédicales : modèles, sémantique et qualité. BioInformatique. Biologie Systémique. Université Pierre et Marie Curie – Paris VI: Université Pierre et Marie Curie – Paris VI.

    Google Scholar 

  26. Fishbain D, Gao JR, Lewis J, et al. Examination of symptom clusters in acute and chronic pain patients. Pain Physician. 2014;17(3):E349–57. [published Online First: 2014/05/23].

    PubMed  Google Scholar 

  27. Garcia-Olmos L, Salvador CH, Alberquilla A, et al. Comorbidity patterns in patients with chronic diseases in general practice. PLoS One. 2012;7(2):e32141. https://doi.org/10.1371/journal.pone.0032141. [published Online First: 2012/02/24].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho DY, Kim YA, Przytycka TM. Chapter 5: Network biology approach to complex diseases. PLoS Comput Biol. 2012;8(12):e1002820. https://doi.org/10.1371/journal.pcbi.1002820. [published Online First: 2013/01/10].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suderman M, Hallett M. Tools for visually exploring biological networks. Bioinformatics. 2007;23(20):2651–9. https://doi.org/10.1093/bioinformatics/btm401. [published Online First: 2007/08/28].

    Article  CAS  PubMed  Google Scholar 

  30. Diaz-Beltran L, Cano C, Wall DP, et al. Systems biology as a comparative approach to understand complex gene expression in neurological diseases. Behav Sci (Basel). 2013;3:253–72.

    Article  Google Scholar 

  31. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6. https://doi.org/10.1097/COH.0b013e32833ed177. [published Online First: 2010/10/28].

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wehling M. Translational medicine: science or wishful thinking? J Transl Med England. 2008;6:31.

    Article  Google Scholar 

  33. Yan Q. Toward the integration of personalized and systems medicine: challenges, opportunities and approaches. 2010 Pers Med. 2011;8(1):1–4. https://doi.org/10.2217/pme.10.77.

    Article  Google Scholar 

  34. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.

    Article  CAS  Google Scholar 

  35. Durako AR, Mishkel G. Creating the virtual cardiac surgical home: implementation of an app based enhanced recovery after surgery platform to improve outcomes and patient engagement. J Am Coll Cardiol. 2018;71(11):A2121.

    Article  Google Scholar 

  36. Satagopam V, Gu W, Eifes S, et al. Integration and visualization of translational medicine data for better understanding of human diseases. Big Data. 2016;4(2):97–108. https://doi.org/10.1089/big.2015.0057. [published Online First: 2016/07/22].

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bui AAT, Van Horn JD. Envisioning the future of ‘big data’ biomedicine. J Biomed Inform. 2017;69:115–7. https://doi.org/10.1016/j.jbi.2017.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Inria. OrphaMine – Plateforme de fouille de données pour les maladies rares – Inria. 2018.

    Google Scholar 

  39. Manos D. Rocking the baseline: Verily, Duke, and stanford aim to make medicine more predictive with a new baseline study. Clinical OMICs. 2017;4(3):3–4.

    Article  Google Scholar 

  40. Wray NR, et al. Common disease is more complex than implied by the core gene omnigenic model. Cell. 2018;173(7):1573–80.

    Article  CAS  Google Scholar 

  41. Philippi S, Köhler J. Addressing the problems with life-science databases for traditional uses and systems biology. Nat Rev Genet. 2006;7(6):482. https://doi.org/10.1038/nrg1872.

    Article  CAS  PubMed  Google Scholar 

  42. Vogt H, Hofmann B, Getz L. The new holism: P4 systems medicine and the medicalization of health and life itself. Med Health Care Philos. 2016;19(2):307–23. https://doi.org/10.1007/s11019-016-9683-8. [published Online First: 2016/01/29].

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur André .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

André, A., Vignaux, JJ. (2019). Precision Medicine. In: André, A. (eds) Digital Medicine. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-98216-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98216-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98215-1

  • Online ISBN: 978-3-319-98216-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics