Precision Medicine

  • Arthur AndréEmail author
  • Jean-Jacques Vignaux
Part of the Health Informatics book series (HI)


Modelizing biology and life has always been a challenge to the modern scientific method due to the complexity of the components and interactions of a biological organization from the cell to a whole human body. Information technology (IT) offers the ability to treat and organize large amounts of data and leads to a paradigm of integration—in opposition to reduction—to explain biological systems and phenomenon. Quantitative datasets of DNA, RNA, proteins, and metabolites provide an unprecedented starting point to understand the effects of perturbations on a cell and, with addition of clinical tests and imaging, the effect on the whole body. The informational view of biology defines biological information—biomarker—as a given data integrated in a network. This leads to a “systems” approach to physiology and pathophysiology.


4P medicine Precision medicine Omics IT 


  1. 1.
    Systems biology. Wikipedia. 2018.Google Scholar
  2. 2.
    Sauer U, Heinemann M, Zamboni N. Getting closer to the whole picture. Science. 2007;316:550. Scholar
  3. 3.
    Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117(4):500–44.CrossRefGoogle Scholar
  4. 4.
    Noble D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature. 1960;188:495–7. Scholar
  5. 5.
    @ISBUSA. What is systems biology. Institute for Systems Biology; Seattle, 2018.Google Scholar
  6. 6.
    Rosen R. Systems theory and biology. In: Mesarović MD, editor. Proceedings of the 3rd systems symposium, Cleveland, Oct 1966. Springer, New York; 1968. xii + 403 p., illus. $16. 1968. Scholar
  7. 7.
    Zewail A. Physical biology: from atoms to medicine. London: Imperial College Press. p. 339.Google Scholar
  8. 8.
    Human Genome Project. Wikipedia. 2018.Google Scholar
  9. 9.
    Zeng BJ. On the holographic model of human body. In: 1st national conference of comparative studies traditional Chinese medicine and west medicine, medicine and philosophy, 1992.Google Scholar
  10. 10.
    Kamada T. System biomedicine: a new paradigm in bio-medical engineering. Jpn J Med Electron Biol Eng. 1991;29(Supplement):1–1.Google Scholar
  11. 11.
    National Research Council Committee on a New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology R. The National Academies Collection: Reports funded by National Institutes of Health. A new biology for the 21st century: ensuring the United States leads the coming biology revolution. Washington, DC: National Academies Press (US)National Academy of Sciences; 2009.Google Scholar
  12. 12.
    National Research Council Committee on AFfDaNToD. The National Academies Collection: Reports funded by National Institutes of Health. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington, DC: National Academies Press (US)National Academy of Sciences; 2011.Google Scholar
  13. 13.
    Schadt EE, Linderman MD, Sorenson J, et al. Computational solutions to large-scale data management and analysis. Nat Rev Genet. 2010;11(9):647–57. [published Online First: 2010/08/19].CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Flores M, Glusman G, Brogaard K, et al. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med. 2013;10(6):565–76. Scholar
  15. 15.
    Sagner M, McNeil A, Puska P, et al. The P4 health spectrum – a predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog Cardiovasc Dis. 2017;59(5):506–21. [published Online First: 2016/08/23].CrossRefPubMedGoogle Scholar
  16. 16.
    Bengoechea JA. Infection systems biology: from reactive to proactive (P4) medicine. Int Microbiol. 2012;15(2):55–60. [published Online First: 2012/08/01].CrossRefPubMedGoogle Scholar
  17. 17.
    Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J Intern Med. 2012;271(2):111–21. [published Online First: 2011/12/07].CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9(1):77–102. [published Online First: 2018/03/09].CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fox S, Duggan M. Health online 2013. Washington, DC: Pew Internet & American Life Project; 2013. p. 1.Google Scholar
  20. 20.
    Picton G. Study shows promise in automated reasoning, hypothesis generation over complete medical literature 2018. Available from:
  21. 21.
    Watts D, Newman M, Barabási, A. The structure and dynamics of networks Princeton studies in complexity Mathematics -Applied (Paperback and eBook). 2006.Google Scholar
  22. 22.
    Yan Q. Translational bioinformatics and systems biology methods for personalized medicine. 1st ed: PharmTao, Santa Clara, CA, USA; 2018.Google Scholar
  23. 23.
    Iris F. Biological modeling in the discovery and validation of cognitive dysfunctions biomarkers. In: Turck C, editor. Biomarkers for psychiatric disorders. Boston: Springer; 2008.CrossRefGoogle Scholar
  24. 24.
    Dodd MJ, Miaskowski C, Lee KA. Occurrence of symptom clusters. JNCI Monogr. 2018;2004(32):76–8. Scholar
  25. 25.
    R. C. Partage de données biomédicales : modèles, sémantique et qualité. BioInformatique. Biologie Systémique. Université Pierre et Marie Curie – Paris VI: Université Pierre et Marie Curie – Paris VI.Google Scholar
  26. 26.
    Fishbain D, Gao JR, Lewis J, et al. Examination of symptom clusters in acute and chronic pain patients. Pain Physician. 2014;17(3):E349–57. [published Online First: 2014/05/23].PubMedGoogle Scholar
  27. 27.
    Garcia-Olmos L, Salvador CH, Alberquilla A, et al. Comorbidity patterns in patients with chronic diseases in general practice. PLoS One. 2012;7(2):e32141. [published Online First: 2012/02/24].CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cho DY, Kim YA, Przytycka TM. Chapter 5: Network biology approach to complex diseases. PLoS Comput Biol. 2012;8(12):e1002820. [published Online First: 2013/01/10].CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Suderman M, Hallett M. Tools for visually exploring biological networks. Bioinformatics. 2007;23(20):2651–9. [published Online First: 2007/08/28].CrossRefPubMedGoogle Scholar
  30. 30.
    Diaz-Beltran L, Cano C, Wall DP, et al. Systems biology as a comparative approach to understand complex gene expression in neurological diseases. Behav Sci (Basel). 2013;3:253–72.CrossRefGoogle Scholar
  31. 31.
    Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6. [published Online First: 2010/10/28].CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wehling M. Translational medicine: science or wishful thinking? J Transl Med England. 2008;6:31.CrossRefGoogle Scholar
  33. 33.
    Yan Q. Toward the integration of personalized and systems medicine: challenges, opportunities and approaches. 2010 Pers Med. 2011;8(1):1–4. Scholar
  34. 34.
    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.CrossRefGoogle Scholar
  35. 35.
    Durako AR, Mishkel G. Creating the virtual cardiac surgical home: implementation of an app based enhanced recovery after surgery platform to improve outcomes and patient engagement. J Am Coll Cardiol. 2018;71(11):A2121.CrossRefGoogle Scholar
  36. 36.
    Satagopam V, Gu W, Eifes S, et al. Integration and visualization of translational medicine data for better understanding of human diseases. Big Data. 2016;4(2):97–108. [published Online First: 2016/07/22].CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bui AAT, Van Horn JD. Envisioning the future of ‘big data’ biomedicine. J Biomed Inform. 2017;69:115–7. Scholar
  38. 38.
    Inria. OrphaMine – Plateforme de fouille de données pour les maladies rares – Inria. 2018.Google Scholar
  39. 39.
    Manos D. Rocking the baseline: Verily, Duke, and stanford aim to make medicine more predictive with a new baseline study. Clinical OMICs. 2017;4(3):3–4.CrossRefGoogle Scholar
  40. 40.
    Wray NR, et al. Common disease is more complex than implied by the core gene omnigenic model. Cell. 2018;173(7):1573–80.CrossRefGoogle Scholar
  41. 41.
    Philippi S, Köhler J. Addressing the problems with life-science databases for traditional uses and systems biology. Nat Rev Genet. 2006;7(6):482. Scholar
  42. 42.
    Vogt H, Hofmann B, Getz L. The new holism: P4 systems medicine and the medicalization of health and life itself. Med Health Care Philos. 2016;19(2):307–23. [published Online First: 2016/01/29].CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de ParisParisFrance
  2. 2.Sorbonne UniversitéParisFrance
  3. 3.iTechCare Medical Data Research, OsteopathParisFrance

Personalised recommendations