Advertisement

Artificial Intelligence and Health Care

  • Bruno PeyrouEmail author
  • Jean-Jacques Vignaux
  • Arthur André
Chapter
Part of the Health Informatics book series (HI)

Abstract

Artificial Intelligence (AI) is usually defined as the capability of a computer program to perform tasks or reasoning processes that we usually associate with intelligence in a human being. Often it has to do with the ability to make a good decision even when there is uncertainty or vagueness or too much information to handle. The large amount of data in the healthcare field, from clinical symptoms to imaging features, offers promising possibilities for machine learning algorithms to improve practice of modern medicine at a large scale.

Keywords

Artificial intelligence Machine learning Deep Learning Artificial neural networks Radiomics 

References

  1. 1.
    Rossi F. Artificial intelligence: potential benefits and ethical considerations: European Parliament’s Citizens’ Rights and Constitutional Affairs Policy Department. 2016. www.europarl.europa.eu
  2. 2.
    Turing AM. Computing machinery and intelligence. Mind. 2018;LIX(236):433–60.CrossRefGoogle Scholar
  3. 3.
    Mesko B. A guide to artificial intelligence in healthcare, The Medical Futurist, Editor. 2017. https://leanpub.com/ArtificialIntelligenceinHealthcare.
  4. 4.
    Yao M. @thinkmariya. WTF is artificial intelligence?!. TOPBOTS. 2017. https://www.topbots.com/wtf-is-artificial-intelligence-intro/.
  5. 5.
    Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30.CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Obermeyer Z, Emanuel EJ. Predicting the future — big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216.CrossRefGoogle Scholar
  8. 8.
    Florence – your health assistant. 2018. https://www.florence.chat.
  9. 9.
    Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.CrossRefGoogle Scholar
  10. 10.
    Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521:452–9.CrossRefGoogle Scholar
  11. 11.
    Kamruzzaman J, Begg RK. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. IEEE Trans Biomed Eng. 2006;53(12 Pt 1):2479–90.CrossRefGoogle Scholar
  12. 12.
    Das R, Turkoglu I, Sengur A. Diagnosis of valvular heart disease through neural networks ensembles. Comput Methods Prog Biomed. 2009;93(2):185–91.CrossRefGoogle Scholar
  13. 13.
    Wu Y, Duan H, Du S. Multiple fuzzy c-means clustering algorithm in medical diagnosis. Technol Health Care. 2015;23(Suppl 2):S519–27.CrossRefGoogle Scholar
  14. 14.
    Azar AT, El-Said SA, Hassanien AE. Fuzzy and hard clustering analysis for thyroid disease. Comput Methods Prog Biomed. 2013;111(1):1–16.CrossRefGoogle Scholar
  15. 15.
    Sun L, Xu J. Feature selection using mutual information based uncertainty measures for tumor classification. Biomed Mater Eng. 2014;24(1):763–70.PubMedGoogle Scholar
  16. 16.
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.CrossRefGoogle Scholar
  17. 17.
    Oakden-Rayner L, et al. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 2017;7(1):1648.CrossRefGoogle Scholar
  18. 18.
    Esteva A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.CrossRefGoogle Scholar
  19. 19.
    Halcox JPJ, et al. Assessment of remote heart rhythm sampling using the AliveCor heart monitor to screen for atrial fibrillation: the REHEARSE-AF study. Circulation. 2017;136(19):1784–94.CrossRefGoogle Scholar
  20. 20.
    Ma C, et al. An efficient diagnosis system for Parkinson’s disease using kernel-based extreme learning machine with subtractive clustering features weighting approach. Comput Math Methods Med. 2014;2014:985789.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Alper BS, Hand JA, Elliott SG, Kinkade S, Hauan MJ, Onion DK, Sklar BM, et al. How much effort is needed to keep up with the literature relevant for primary care? J Med Libr Assoc. 2004;92(4):429–37.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Alder Hey Children’s Hospital set to become UK’s First ‘Cognitive’ Hospital – Science and Technology Facilities Council. 2018. Available from: https://stfc.ukri.org/news/alder-hey-children-s-hospital-set-to-become-uk-s-first-cognitive-hospital/.
  23. 23.
    Ross C. @caseymross. IBM pitched Watson as a revolution in cancer care. It’s nowhere close. 2017. https://www.statnews.com/2017/09/05/watson-ibm-cancer/.
  24. 24.
    Larue RT, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665.CrossRefGoogle Scholar
  25. 25.
    Kumar V, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.CrossRefGoogle Scholar
  26. 26.
    Lambin P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.CrossRefGoogle Scholar
  27. 27.
    Ito M, et al. Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology. 1995;194(1):55–9.  https://doi.org/10.1148/radiology.194.1.7997582.CrossRefPubMedGoogle Scholar
  28. 28.
    Aerts HJ, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.CrossRefGoogle Scholar
  29. 29.
    Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Gnep K, et al. Haralick textural features on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer. J Magn Reson Imaging. 2017;45(1):103–17.CrossRefGoogle Scholar
  32. 32.
    Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25:2840.  https://doi.org/10.1007/s00330-015-3701-8.CrossRefGoogle Scholar
  33. 33.
    Eminowicz G. McCormack M Variability of clinical target volume delineation for definitive radiotherapy in cervix cancer. Radiother Oncol. 2015;117(3):542–7.  https://doi.org/10.1016/j.radonc.2015.10.007.CrossRefGoogle Scholar
  34. 34.
    Ji Z, et al. Generalized rough fuzzy c-means algorithm for brain MR image segmentation. Comput Methods Prog Biomed. 2012;108(2):644–55.CrossRefGoogle Scholar
  35. 35.
    Chupin M, et al. Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation. NeuroImage. 2009;46(3):749–61.CrossRefGoogle Scholar
  36. 36.
    Bolleard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.Google Scholar
  37. 37.
    Zhao B, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016;6:23428.CrossRefGoogle Scholar
  38. 38.
    Oliver JA, et al. Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol. 2015;8(6):524–34.CrossRefGoogle Scholar
  39. 39.
    Spatial precision in magnetic resonance imaging–guided radiation therapy: the role of geometric distortion. Int J Radiat Oncol Biol Phys. 2017.Google Scholar
  40. 40.
    Holl EM, et al. Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery. 2010;67(2 Suppl Operative):437–47.PubMedGoogle Scholar
  41. 41.
    Leijenaar RTH, et al. Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncol. 2013;52(7):1391–7.  https://doi.org/10.3109/0284186X.2013.812798.CrossRefPubMedGoogle Scholar
  42. 42.
    AiCure. 2018. Available from: https://aicure.com/.
  43. 43.
    Sensely. How are you feeling today? 2018. Available from: http://www.sensely.com/.
  44. 44.
    NHS doctor appointments online. GP at hand. 2018.Google Scholar
  45. 45.
    @digitalhealth2. Babylon and others removed from NHS Apps Library. 2018. https://www.digitalhealth.net/2018/03/babylon-removed-nhsapps-library/.
  46. 46.
    British Science Association. One in three believe that the rise of artificial intelligence is a threat to humanity. 2018. tishscienceassociation.org/news/rise-of-artificial-intelligence-is-a-threat-to-humanity.Google Scholar
  47. 47.
    Kleinberg J, et al. Prediction policy problems. Am Econ Rev. 2015;105(5):491–5.CrossRefGoogle Scholar
  48. 48.
    Chen JH, Asch SM. Machine learning and prediction in medicine — beyond the peak of inflated expectations. N Engl J Med. 2017;376(26):2507–9. http://dx.doi.org.gate2.inist.fr/10.1056/NEJMp1702071.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bruno Peyrou
    • 1
    Email author
  • Jean-Jacques Vignaux
    • 1
  • Arthur André
    • 2
    • 3
  1. 1.iTechCare Medical Data ResearchParisFrance
  2. 2.Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de ParisParisFrance
  3. 3.Sorbonne UniversitéParisFrance

Personalised recommendations