Skip to main content

Interactions Between IOP, ICP, OPP

  • Chapter
  • First Online:
  • 426 Accesses

Abstract

Intraocular, intracranial and ocular perfusion pressures are important parameters in glaucoma pathophysiology and progression. Taking into account the physiological triangular relationship between intraocular, intracranial and arterial blood pressures, glaucoma might be described as a misbalance between these parameters, leading to increase in translaminar pressure difference and translaminar pressure gradient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dickerman RD, Smith GH, Langham-Roof L, McConathy WJ, East JW, Smith AB. Intra-ocular pressure changes during maximal isometric contraction: does this reflect intra-cranial pressure or retinal venous pressure? Neurol Res. 1999;21(3):243–6.

    Article  CAS  PubMed  Google Scholar 

  2. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. Retinal artery and vein pressures in the dog and their relationship to aortic, intraocular, and cerebrospinal fluid pressures. Microvasc Res. 1997;53(3):211–21.

    Article  CAS  PubMed  Google Scholar 

  3. Hayreh SS, Edwards J. Ophthalmic arterial and venous pressures. Effects of acute intracranial hypertension. Br J Ophthalmol. 1971;55(10):649–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morrow BA, Starcevic VP, Keil LC, Seve WB. Intracranial hypertension after cerebroventricular infusions in conscious rats. Am J Phys. 1990;258(5 Pt 2):R1170–6.

    CAS  Google Scholar 

  5. Maurel D, Ixart G, Barbanel G, Mekaouche M, Assenmacher I. Effects of acute tilt from orthostatic to head-down antiorthostatic restraint and of sustained restraint on the intra-cerebroventricular pressure in rats. Brain Res. 1996;736(1–2):165–73.

    Article  CAS  PubMed  Google Scholar 

  6. Smith RB, Aass AA, Nemoto EM. Intraocular and intracranial pressure during respiratory alkalosis and acidosis. Br J Anaesth. 1981;53(9):967–72.

    Article  CAS  PubMed  Google Scholar 

  7. Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):142–8.

    Article  Google Scholar 

  8. Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057–63.

    Article  PubMed  Google Scholar 

  9. Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The Central India Eye and Medical Study. PLoS One. 2013;8(12):2–9.

    Article  Google Scholar 

  10. Jonas JB, Wang NL, Wang YX, You QS, Xie XB, Yang DY, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmol. 2015;93(1):e7–13.

    Article  PubMed  Google Scholar 

  11. Sheeran P, Bland JM, Hall GM. Intraocular pressure changes and alterations in intracranial pressure. Lancet. 2000;355(9207):899.

    Article  CAS  PubMed  Google Scholar 

  12. Li Z, Yang Y, Lu Y, Liu D, Xu E, Jia J, et al. Intraocular pressure vs intracranial pressure in disease conditions: A prospective cohort study (Beijing iCOP study). BMC Neurol. 2012;12:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lashutka MK, Chandra A, Murray HN, Phillips GS, Hiestand BC. The relationship of intraocular pressure to intracranial pressure. Ann Emerg Med. 2004;43(5):585–91.

    Article  PubMed  Google Scholar 

  14. Lehman RA, Krupin T, Podos SM. Experimental effect of intracranial hypertension upon intraocular pressure. J Neurosurg. 1972;36(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  15. Nakano J, Chang AC, Fisher RG. Effects of prostaglandins E 1, E 2, A 1, A 2, and F 2 on canine carotid arterial blood flow, cerebrospinal fluid pressure, and intraocular pressure. J Neurosurg. 1973;38(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sajjadi SA, Harirchian MH, Sheikhbahaei N, Mohebbi MR, Malekmadani MH, Saberi H. The relation between intracranial and intraocular pressures: study of 50 patients. Ann Neurol. 2006;59(5):867–70.

    Article  PubMed  Google Scholar 

  17. Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83.

    Article  PubMed  Google Scholar 

  18. Pircher A, Remonda L, Weinreb RN, Killer HE. Translaminar pressure in Caucasian normal tension glaucoma patients. Acta Ophthalmol. 2017;95(7):e524–31.

    Article  PubMed  Google Scholar 

  19. Kirk T, Jones K, Miller S, Corbett J. Measurement of intraocular and intracranial pressure: is there a relationship? Ann Neurol. 2011;70(2):323–6.

    Article  PubMed  Google Scholar 

  20. Czarnik T, Gawda R, Latka D, Kolodziej W, Sznajd-Weron K, Weron R. Noninvasive measurement of intracranial pressure: is it possible? J Trauma. 2007;62(1):207–11.

    Article  PubMed  Google Scholar 

  21. Han Y, McCulley TJ, Horton JC. No correlation between intraocular pressure and intracranial pressure. Ann Neurol. 2008;64(2):221–4.

    Article  PubMed  Google Scholar 

  22. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in Glaucoma. A prospective study. Ophthalmology [Internet]. 2010;117(2):259–66. Available from:. https://doi.org/10.1016/j.ophtha.2009.06.058.

    Article  Google Scholar 

  23. Samuels BC, Hammes NM, Johnson PL, Shekhar A, McKinnon SJ, Rand AR. Dorsomedial/perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Investig Ophthalmol Vis Sci. 2012;53(11):7328–35.

    Article  Google Scholar 

  24. Berdahl JP, Fleischman D, Zaydlarova J, Stinnett S, Allingham RR, Fautsch MP. Body mass index has a linear relationship with cerebrospinal fluid pressure. Investig Opthalmol Vis Sci [Internet]. 2012;53(3):1422. https://doi.org/10.1167/iovs.11-8220.

    Article  Google Scholar 

  25. Mitchell P, Lee AJ, Wang JJ, Rochtchina E. Intraocular pressure over the clinical range of blood pressure: blue mountains eye study findings. Am J Ophthalmol. 2005;140(1):131–2.

    Article  PubMed  Google Scholar 

  26. Xu L, Wang H, Wang Y, Jonas JB. Intraocular pressure correlated with arterial blood pressure: the Beijing Eye Study. Am J Ophthalmol. 2007;144(3):461–2.

    Article  PubMed  Google Scholar 

  27. Leske MC, Wu S-Y, Hennis A, Honkanen R, Nemesure B. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008;115(1):85–93.

    Article  PubMed  Google Scholar 

  28. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107(7):1287–93.

    Article  CAS  PubMed  Google Scholar 

  29. Hulsman CAA, Vingerling JR, Hofman A, Witteman JCM, de Jong PTVM. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol (Chicago, IL: 1960). 2007;125(6):805–12.

    Article  Google Scholar 

  30. BEK K, Klein R, Knudtson MD. Intraocular pressure and systemic blood pressure: longitudinal perspective: the Beaver Dam Eye Study. Br J Ophthalmol. 2005;89:284–7.

    Article  Google Scholar 

  31. Orzalesi N, Rossetti L, Omboni S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol. 2007;245(6):795–802.

    Article  PubMed  Google Scholar 

  32. Mitchell P, Smith W, Chey T, Healey PR. Open-angle glaucoma and diabetes: the Blue Mountains Eye Study, Australia. Ophthalmology. 1997;104(4):712–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rouhiainen HJ, Terasvirta ME. Hemodynamic variables in progressive and non-progressive low tension glaucoma. Acta Ophthalmol. 1990;68(1):34–6.

    Article  CAS  Google Scholar 

  34. Wang N, Peng Z, Fan B, Liu Y, Dong X, Liang X, et al. Case control study on the risk factors of primary open angle glaucoma in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2002;23(4):293–6.

    CAS  PubMed  Google Scholar 

  35. Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24(6):621–64.

    Article  CAS  PubMed  Google Scholar 

  36. Leighton DA, Phillips CI. Systemic blood pressure in open-angle glaucoma, low tension glaucoma, and the normal eye. Br J Ophthalmol. 1972;56:447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kashiwagi K, Hosaka O, Kashiwagi F, Taguchi K, Mochizuki J, Ishii H, et al. Systemic circulatory parameters. Comparison between patients with normal tension glaucoma and normal subjects using ambulatory monitoring. Jpn J Ophthalmol. 2001;45(4):388–96.

    Article  CAS  PubMed  Google Scholar 

  38. Goldberg I, Hollows FC, Kass MA, Becker B. Systemic factors in patients with low-tension glaucoma. Br J Ophthalmol. 1981;65:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dielemans I, Vingerling JR, Wolfs RC, Hofman A, Grobbee DE, de Jong PT. The prevalence of primary open-angle glaucoma in a population-based study in The Netherlands. The Rotterdam Study. Ophthalmology. 1994;101(11):1851–5.

    Article  CAS  PubMed  Google Scholar 

  40. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–72.

    Article  PubMed  Google Scholar 

  41. Topouzis F, Coleman AL, Harris A, Jonescu-Cuypers C, Yu F, Mavroudis L, et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol. 2006;142(1):60–7.

    Article  PubMed  Google Scholar 

  42. Collignon N, Dewe W, Guillaume S, Collignon-Brach J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol. 1998;22(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  43. Demailly P, Cambien F, Plouin PF, Baron P, Chevallier B. Do patients with low tension glaucoma have particular cardiovascular characteristics? Ophthalmologica. 1984;188(2):65–75.

    Article  CAS  PubMed  Google Scholar 

  44. Graham SL, Drance SM. Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol. 1999;43(Suppl 1):S10–6.

    Article  PubMed  Google Scholar 

  45. Graham SL, Drance SM, Wijsman K, Douglas GR, Mikelberg FS. Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip. Ophthalmology. 1995;102(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kaiser HJ, Flammer J, Burckhardt D. Silent myocardial ischemia in glaucoma patients. Ophthalmologica. 1993;207(1):6–7.

    Article  CAS  PubMed  Google Scholar 

  47. Sachsenweger R. The influence of hypertension on the prognosis of glaucoma. Klin Monatsbl Augenheilkd. 1963;142:625–33.

    CAS  PubMed  Google Scholar 

  48. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603–24.

    Article  CAS  PubMed  Google Scholar 

  49. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol (Chicago, IL: 1960). 2002;120(6):714–30.

    Article  Google Scholar 

  50. Jonas JB, Wang N. Association between arterial blood pressure, cerebrospinal fluid pressure and intraocular pressure in the pathophysiology of optic nerve head diseases. Clin Exp Ophthalmol. 2012;40:e233–4.

    Article  PubMed  Google Scholar 

  51. Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Meiliuniene I, Siesky B, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Emre M, Orgul S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol. 2004;88(5):662–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Siaudvytyte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siaudvytyte, L. (2019). Interactions Between IOP, ICP, OPP. In: Januleviciene, I., Harris, A. (eds) Biophysical Properties in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-98198-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98198-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98197-0

  • Online ISBN: 978-3-319-98198-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics