Skip to main content

Imaging Techniques of the Optic Nerve Head and Retinal Fiber Layer

  • Chapter
  • First Online:
  • 439 Accesses

Abstract

Since glaucoma is the leading cause of irreversible blindness, early diagnosis and detection of progression takes important place in many clinicians everyday practice. The appearance of optic nerve head is one of the glaucoma diagnostic mainstays. However, it is not always easy to asses and even to document the changes of appearance, especially in unusual structure discs: tilted, very small or very large optic nerve discs. Written descriptions seems to be insufficient for careful follow-up. Structural characteristics can be documented by taking photos or more sophisticated scanning imaging devices that are playing an increasing role in glaucoma diagnosis, monitoring of disease progress, and quantification of structural damage [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Greenfield DS, Weinreb RN. Role of optic nerve imaging in glaucoma clinical practice and clinical trials. Am J Ophthalmol. 2008;145(4):598–603.

    Article  Google Scholar 

  2. Sharma P, Sample PA, Schuman JS ZLM. Diagnostic tools for glaucoma detection and management. Surv Ophthalmol. 2008;53(Suppl 1):S17–32.

    Article  Google Scholar 

  3. European Glaucoma Society. Terminology and guidelines for glaucoma, $th edition. Savona: Dogma; 2014.

    Google Scholar 

  4. American Academy of Ophthalmology. Basic and clinical science course. Glaucoma. San Francisco: American Academy of Ophthalmology; 2010.

    Google Scholar 

  5. Fingeret M, Medeiros FA, Susanna R, et al. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry. 2005;76:661–8. [PubMed: 16298320].

    Article  Google Scholar 

  6. Wong D. Fundus photography and fluorescein angiography. J Ophthalmic Photogr. 1979;2:37–45.

    Google Scholar 

  7. Trobe JD, Glaser JS, Cassady J, et al. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046.

    Article  CAS  Google Scholar 

  8. Parrish RK, Schiffman JC, Feuer WJ, et al. Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol. 2005;140:762–4. [PubMed: 16226544].

    Article  Google Scholar 

  9. Zeyen T, Miglior S, Pfeiffer N, et al. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology. 2003;110:340–4. [PubMed: 12578778].

    Article  Google Scholar 

  10. Deleón-Ortega JE, Arthur SN, McGwin G, et al. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci. 2006;47:3374–80. [PubMed: 16877405].

    Article  Google Scholar 

  11. European Glaucoma Society. Glaucoma imaging. Savona: Dogma; 2017.

    Google Scholar 

  12. Rhee DJ. Glaucoma. Color atlas & synopsis of clinical ophthalmology. Chapter 9. 2nd ed: Wills Eye Institute. p. 136–49.

    Google Scholar 

  13. Zangwill LM, Bow C, Berry CC, Williams J, Blumenthal EZ, Sánchez-Galeana C, Weinreb RN. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol. 2001;119(July):985–93. https://doi.org/10.1001/archopht.119.7.985.

    Article  CAS  PubMed  Google Scholar 

  14. Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scaning laser ophthalmoscope. Ophthalmology. 1998;105:1557–63.

    Article  CAS  Google Scholar 

  15. Oddone F, Centofanti M, Rosseti L, et al. Exploring the Reidelberg retinal Tomograph 3 diagnostic accuracy across disc sizes and glaucoma stages: a multicenter study. Ophthalmology. 2008;115:1358–65.

    Article  Google Scholar 

  16. Miglior S, Albe E, Guareschi M, et al. Intraobserver and intraobserver reproducibility in the evaluation of optic disc stereometric parameters by Reidelberg Retina Tomograph. Ophthalmology. 2002;109:1072–7.

    Article  Google Scholar 

  17. Harasymowycz PJ, Papamatheakis DG, Fansi AK. Validity of screening for glaucomatous optic nerve damage using confocal laser ophthalmoscopy (Reidelberg Retina Tomograph II) in high risk populations. A pilot study. Ophthalmology. 2007;112:2164–71.

    Article  Google Scholar 

  18. Michelessi M, Lucenteforte E, Oddone F, et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochranes Database Syst Rev. 2015;11:CD008803.

    Google Scholar 

  19. Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology. 2009;116(11):2110–8. https://doi.org/10.1016/j.ophtha.2009.04.031. Epub 2009 Jun 4.

    Article  PubMed  Google Scholar 

  20. Iester MM, Wollstein G, Bilonick RA, Xu J, Ishikawa H, Kagemann L, Science V. Agreement among graders on Heidelberg retina tomograph (HRT) topographic change analysis (TCA) glaucoma progression interpretation. Br J Ophthalmol. 2016;99(4):519–23. https://doi.org/10.1136/bjophthalmol-2014-305377.Agreement.

    Article  Google Scholar 

  21. Zangwill LM, Weinreb RN, Beiser JA, et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle Glaucoma: confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study group. Arch Ophthalmol. 2005;123(9):1188–97. https://doi.org/10.1001/archopht.123.9.1188.

    Article  PubMed  Google Scholar 

  22. Sehi M, Guaqueta DC, Feuer WJ, Greenfield DS. Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. Am J Ophthalmol. 2007;143(2):272–9.

    Article  Google Scholar 

  23. Weinreb RN, Shakiba S, Zangwill L. Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes. Am J Ophthalmol. 1995;119(5):627–36.

    Article  CAS  Google Scholar 

  24. Badala F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Caprioli J. Optic disc and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol. 2007;144(5):724–32.

    Article  Google Scholar 

  25. Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN. Detection of Glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2017;48(7):3146–53. https://doi.org/10.1167/iovs.06-1139.

    Article  Google Scholar 

  26. Bowd C, Medeiros FA, Zhang Z, Zangwill LM, Lee T, Sejnowski TJ, Michael H. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci. 2010;46(4):1322–9. https://doi.org/10.1167/iovs.04-1122.

    Article  Google Scholar 

  27. Medeiros FA, Zangwill LM, Bowd C, et al. Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma. Invest Ophthalmol Vis Sci. 2003;44:2606–12. [PubMed: 12766063.

    Article  Google Scholar 

  28. Medeiros FA, Zangwill LM, Bowd C, et al. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol. 2005;139:1010–8. [PubMed: 15953430].

    Article  Google Scholar 

  29. Hoh ST, Greenfield DS, Liebmann JM, et al. Factors affecting image acquisition during scanning laser polarimetry. Ophthalmic Surg Lasers. 1998;29:545–51.

    CAS  PubMed  Google Scholar 

  30. Gabriele ML, Wollstein G, Ishikawa H, et al. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011;52(5):2425–36. https://doi.org/10.1167/iovs.10-6312.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pyo SW, Lim YJ, Lee WJ, Lee JJ. Study on application to the field of dentistry using optical coherence tomography (OCT). J Korean Acad Prosthodont. 2017;55(1):100–10. https://doi.org/10.4047/jkap.2017.55.1.100.

    Article  Google Scholar 

  32. Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98:ii15–9. https://doi.org/10.1136/bjophthalmol-2013-304326.

    Article  PubMed  Google Scholar 

  33. Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2011;95:909–14. https://doi.org/10.1136/bjo.2010.186924.

    Article  PubMed  Google Scholar 

  34. Leung CK, Cheung CYL, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22. https://doi.org/10.1167/iovs.09-3468.

    Article  PubMed  Google Scholar 

  35. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003;110:177–89.

    Article  Google Scholar 

  36. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55. https://doi.org/10.1016/j.ajo.2004.08.069.

    Article  PubMed  Google Scholar 

  37. Leung CKS, Chan W-M, Yung W-H, Ng ACK, Woo J, Tsang M-K, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma. Ophthalmology. 2005;112:391–400. https://doi.org/10.1016/j.ophtha.2004.10.020.

    Article  PubMed  Google Scholar 

  38. Mori S, Hangai M, Sakamoto A, Yoshimura N. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma. 2010;19:528–34. https://doi.org/10.1097/IJG.0b013e3181ca7acf.

    Article  PubMed  Google Scholar 

  39. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20:252–9. https://doi.org/10.1097/IJG.0b013e3181e079ed.

    Article  PubMed  Google Scholar 

  40. Girkin CA, Liebmann J, Fingeret M, Greenfield DS, Medeiros F. The effects of race, optic disc area, age, and disease severity on the diagnostic performance of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:6148–53. https://doi.org/10.1167/iovs.10-6698.

    Article  PubMed  Google Scholar 

  41. Yang Z, Tatham AJ, Zangwill LM, et al. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am J Ophthalmol. 2015;159:193–201.

    Article  Google Scholar 

  42. *GMPE brochure. https://business-lounge.heidelbergengineering.com/us/en/products/spectralis/glaucoma-module/downloads Reached at: 2018-03-10.

  43. Kansal V, Armstrong JJ, Pintwala R, Hutnik C. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One. 2018;13(1):e0190621. https://doi.org/10.1371/journal.pone.0190621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Radhakrishnan S, Huang D, Smith SD. Optical coherence tomography imaging of the anterior chamber angle. Ophthalmol Clin N Am. 2005;18:375–81.

    Article  Google Scholar 

  45. Zhang C, Tatham AJ, Medeiros FA, Zangwill LM, Yang Z, et al. Assessment of choroidal thickness in healthy and glaucomatous eyes using swept source optical coherence tomography. PLoS One. 2014;9(10):e109683. https://doi.org/10.1371/journal.pone.0109683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sigal IA, Wang B, Strouthidis NG, Akagi T, Girard MJA. Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol. 2014;98(Suppl 2):ii34–9. https://doi.org/10.1136/bjophthalmol-2013-304751.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akvile Stoskuviene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoskuviene, A. (2019). Imaging Techniques of the Optic Nerve Head and Retinal Fiber Layer. In: Januleviciene, I., Harris, A. (eds) Biophysical Properties in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-98198-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98198-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98197-0

  • Online ISBN: 978-3-319-98198-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics