Skip to main content

Healing of Myocardial Infarction

  • Chapter
  • First Online:
  • 430 Accesses

Abstract

Myocardial infarction (MI) and the resulting loss of functionality of the myocardium appear to be the major causes for the failing heart. Despite aggressive therapeutic strategies, prognosis remains poor in patients with big infarction and severe left ventricular dysfunction. Therefore, it appears of great importance to enhance myocardial healing aiming to preserve its structure and function. Underlying processes as well as general known healing factors appear to be essential for myocardial healing. Their role and the available therapeutic approaches will be discussed in the present chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Phys. 1991;260:H1406–14.

    CAS  Google Scholar 

  2. Gaudron P, Kugler I, Hu K, Bauer W, Eilles C, Ertl G. Time course of cardiac structural, functional and electrical changes in asymptomatic patients after myocardial infarction: their inter-relation and prognostic impact. J Am Coll Cardiol. 2001;38:33–40.

    Article  CAS  PubMed  Google Scholar 

  3. Holmes JW, Yamashita H, Waldman LK, Covell JW. Scar remodelling and transmural deformation after infarction in the pig. Circulation. 1994;90:411–20.

    Article  CAS  PubMed  Google Scholar 

  4. Hochman JS, Choo H. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation. 1987;75:299–306.

    Article  CAS  PubMed  Google Scholar 

  5. Gaudron P, Hu K, Schamberger R, Budin M, Walter B, Ertl G. Effect of endurance training early or late after coronary artery occlusion on left ventricular remodeling, hemodynamics, and survival in rats with chronic transmural myocardial infarction. Circulation. 1994;89:402–12.

    Article  CAS  PubMed  Google Scholar 

  6. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010;48:504–11.

    Article  CAS  PubMed  Google Scholar 

  7. Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res. 2008;58:88–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17:581–8.

    Article  CAS  PubMed  Google Scholar 

  9. Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005;45:657–87.

    Article  CAS  PubMed  Google Scholar 

  10. The Emerging Risk Factor Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.

    Article  CAS  Google Scholar 

  11. Laakso M. Cardiovascular disease in type 2 diabetes from population to man to mechanisms. The Kelly West award lecture 2008. Diabetes Care. 2010;33:442–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332:73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kanaya AM, Grady D, Barrett-Connor E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus. Arch Intern Med. 2002;162:1737–45.

    Article  PubMed  Google Scholar 

  14. Rivellese AA, Riccardi G, Vaccaro O. Cardiovascular risk in women with diabetes. Nutr Metab Cardiovasc Dis. 2010;20:474–80.

    Article  CAS  PubMed  Google Scholar 

  15. Løkkegaard E, Pedersen AT, Heitmann BL, Jovanovic Z, Keiding N, Hundrup YA, et al. Relation between hormone replacement therapy and ischaemic heart disease in women: prospective observational study. BMJ. 2003;326:426–30.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barrett-Connor E, Cohn BA, Wingard DL, Edelstein SL. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. JAMA. 1991;265:627–31.

    Article  CAS  PubMed  Google Scholar 

  17. Psaltopoulou T, Hatzis G, Papageorgiou N, Androulakis E, Briasoulis A, Tousoulis D. Socioeconomic status and risk factors for cardiovascular disease: impact of dietary mediators. Hell J Cardiol. 2017;58:32–42.

    Article  Google Scholar 

  18. Guidelines Subcommittee. 1999 World Health Organization – international society of hypertension guidelines for the management of hypertension. J Hypertens. 1999;17:151–83.

    Google Scholar 

  19. Labarthe DR. Epidemiology and prevention of cardiovascular diseases: a global challenge. Gaithersburg: Aspen Publishers, Inc.; 1998.

    Google Scholar 

  20. Staessen JA, Wang J, Bianchi G, Birkenhäger WH. Essential hypertension. Lancet. 2003;361:1629–41.

    Article  PubMed  Google Scholar 

  21. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure and vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  22. Lawes CM, Rodgers A, Bennett DA, Parag V, Suh I, Ueshima H, et al. Blood pressure and cardiovascular disease in the Asia Pacific region. J Hypertens. 2003;21:707–16.

    Article  CAS  PubMed  Google Scholar 

  23. MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J. Blood pressure, stroke, and coronary heart disease. Part 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74.

    Article  CAS  PubMed  Google Scholar 

  24. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  25. Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.

    Article  CAS  PubMed  Google Scholar 

  26. Selmer R. Blood pressure and twenty-year mortality in the city of Bergen, Norway. Am J Epidem. 1992;136:428–40.

    Article  CAS  Google Scholar 

  27. Carlsson AC, Theobald H, Hellenius M-L, Wändell PE. Cardiovascular and total mortality in men and women with different blood pressure levels – a 26-year follow-up. Blood Press. 2009;18:105–10.

    Article  PubMed  Google Scholar 

  28. Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediciton of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.

    Article  CAS  PubMed  Google Scholar 

  29. Sniderman AD, Junger I, Holme I, Aastveit A, Walldius G. Errors that result from using the TC/HDL C ratio rather than the apoB/apoA-1 ratio to identify the lipoprotein-related risk of vascular disease. J Intern Med. 2006;259:455–61.

    Article  CAS  PubMed  Google Scholar 

  30. National cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.

    Article  Google Scholar 

  31. Pilote L, Dasgupta K, Guru V, Humphries KH, McGrath J, Norris C, et al. A comprehensive view of sex-specific issues related to cardiovascular disease. CMAJ. 2007;176:S1–S44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Langsted A, Freiberg JJ, Tybjærg-Hansen A, Schnohr P, Jensen GB, Nordestgaard BG. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270:65–75.

    Article  CAS  PubMed  Google Scholar 

  33. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81:7B–12B.

    Article  CAS  PubMed  Google Scholar 

  34. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–9.

    Article  CAS  PubMed  Google Scholar 

  35. Avins AL, Neuhaus JM. Do triglycerides provide meaningful information about heart disease risk? Arch Int Med. 2000;160:1937–44.

    Article  CAS  Google Scholar 

  36. Morrison A, Hokanson JE. The independent relationship between triglycerides and coronary heart disease. Vasc Health Risk Manag. 2009;5:89–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ford ES. Risk for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome. Diabetes Care. 2005;28:1769–78.

    Article  PubMed  Google Scholar 

  38. Hunt KJ, Resendez RG, Williams K, Haffner SM, Stern MP. National cholesterol education program versus world health organization: metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation. 2004;110:1251–7.

    Article  PubMed  Google Scholar 

  39. Bentley-Lewis R, Koruda K, Seely EW. The metabolic syndrome in women. Nat Clin Pract Endocrinol Metab. 2007;3:696–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Canoy D, Boekholdt M, Wareham N, Luben R, Welch A, Bingham S. Body fat distribution and risk of coronary heart disease in men and women in the European prospective investigation into Cancer and nutrition in Norfolk cohort: a population-based prospective study. Circulation. 2007;16:2933–43.

    Article  Google Scholar 

  41. Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and European Association for the Study of Diabetes. Diabetologia. 2005;48:1684–99.

    Article  CAS  PubMed  Google Scholar 

  42. Reaven GM. The metabolic syndrome: time to get off the merry-go-round? J Intern Med. 2011;269:127–36.

    Article  CAS  PubMed  Google Scholar 

  43. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease. An update. J Am Coll Cardiol. 2004;43:1731–7.

    Article  CAS  PubMed  Google Scholar 

  44. Huxley RR, Woodward M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet. 2011;378:1297–305.

    Article  PubMed  Google Scholar 

  45. Horie H, Takahashi M, Minai K, Izumi M, Takaoka A, Nozawa M, et al. Long-term beneficial effect of late reperfusion for acute anterior myocardial infarction with percutaneous transluminal coronary angioplasty. Circulation. 1998;98:2377–82.

    Article  CAS  PubMed  Google Scholar 

  46. Sadanandan S, Buller C, Menon V, Dzavik V, Terrin M, Thompson B, et al. The late open artery hypothesis–a decade later. Am Heart J. 2001;142:411–21.

    Article  CAS  PubMed  Google Scholar 

  47. Abbate A, Bussani R, Biondi-Zoccai GG, Rossiello R, Silvestri F, Baldi F, et al. Persistent infarct-related artery occlusion is associated with an increased myocardial apoptosis at postmortem examination in humans late after an acute myocardial infarction. Circulation. 2002;106:1051–4.

    Article  PubMed  Google Scholar 

  48. Aikawa Y, Rohde L, Plehn J, Greaves SC, Menapace F, Arnold MO, et al. Regional wall stress predicts ventricular remodeling after anteroseptal myocardial infarction in the healing and early afterload reducing trial (HEART): an echocardiography-based structural analysis. Am Heart J. 2001;141:234–42.

    Article  CAS  PubMed  Google Scholar 

  49. Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia reperfusion injury in the heart. Circulation. 2000;101:1833–9.

    Article  CAS  PubMed  Google Scholar 

  50. Bettencourt-Dias M, Mittnacht S, Brockes JP. Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci. 2003;116:4001–9.

    Article  CAS  PubMed  Google Scholar 

  51. Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol. 2000;32:197–208.

    Article  CAS  PubMed  Google Scholar 

  52. Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro S, et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol. 1995;155:128–33.

    CAS  PubMed  Google Scholar 

  53. Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med. 1997;3:1209–15.

    Article  CAS  PubMed  Google Scholar 

  54. Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales-Ruiz M, et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res. 2000;87:677–82.

    Article  CAS  PubMed  Google Scholar 

  55. Wozniak G, Noll T, Bott U, Hehrlein FW. Factor XIII: experimental and clinical results in diabetic foot ulcer. Zentralbl Chir. 1999;124(Suppl 1):73–7.

    PubMed  Google Scholar 

  56. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, et al. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation. 2000;102:1944–9.

    Article  CAS  PubMed  Google Scholar 

  57. Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, et al. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol. 2003;285:H1229–35.

    Article  CAS  PubMed  Google Scholar 

  58. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med. 1999;5:1135–42.

    Article  CAS  PubMed  Google Scholar 

  59. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ashcroft GS, Horan MA, Ferguson MW. Aging is associated with reduced deposition of specific extracellular matrix components, an upregulation of angiogenesis, and an altered inflammatory response in a murine incisional wound healing model. J Invest Dermatol. 1997;108:430–7.

    Article  CAS  PubMed  Google Scholar 

  61. Binko J, Murphy TV, Majewski H. 17Beta-oestradiol enhances nitric oxide synthase activity in endothelium-denuded rat aorta. Clin Exp Pharmacol Physiol. 1998;25:120–7.

    Article  CAS  PubMed  Google Scholar 

  62. Zdrojewski T, Gaudron P, Whittaker P, Poelzl S, Schiemann J, Hu K, et al. Ventricular remodeling after myocardial infarction and effects of ACE inhibition on hemodynamics and scar formation in SHR. Cardiovasc Pathol. 2002;11:88–93.

    Article  CAS  PubMed  Google Scholar 

  63. Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T. Targeted deletion of angiotensin II type 2 receptor caused cardiac rupture after acute myocardial infarction. Circulation. 2002;106:2244–9.

    Article  CAS  PubMed  Google Scholar 

  64. Phillips MI, Kagiyama S. Angiotensin II as a pro-inflammatory mediator. Curr Opin Investig Drugs. 2002;3:569–77.

    CAS  PubMed  Google Scholar 

  65. Maggioni AP, Maseri A, Fresco C, Franzosi MG, Mauri F, Santoro E, et al. Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The investigators of the GruppoItaliano per lo Studio dellaSopravvivenzanell’InfartoMiocardico (GISSI-2). N Engl J Med. 1993;329:1442–8.

    Article  CAS  PubMed  Google Scholar 

  66. Vaccarino V, Parsons L, Every NR, Barron HV, Krumholz HM. Sexbased differences in early mortality after myocardial infarction. National registry of myocardial infarction 2 participants. N Engl J Med. 1999;341:217–25.

    Article  CAS  PubMed  Google Scholar 

  67. Podesser BK, Siwik DA, Eberli FR, Sam F, Ngoy S, Lambert J, et al. ET(A)-receptor blockade prevents matrix metalloproteinase activation late postmyocardial infarction in the rat. Am J Physiol Heart Circ Physiol. 2001;280:H984–91.

    Article  CAS  PubMed  Google Scholar 

  68. Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, et al. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation. 2001;104:1286–91.

    Article  CAS  PubMed  Google Scholar 

  69. Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS. Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol. 2002;34(4):379–88.

    Article  CAS  PubMed  Google Scholar 

  70. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115(3):500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Munzel T, Gori T, Keaney JF Jr, Maack C, Daiber A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J. 2015;36(38):2555–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Yamasaki K, Edington HD, McClosky C, Tzeng E, Lizonova A, Kovesdi I, et al. Reversal of impaired wound repair in iNOS deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest. 1998;101:967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sansilvestri-Morel P, Rupin A, Jaisson S, Fabiani JN, Verbeuren TJ, Vanhoutte PM. Synthesis of collagen is dysregulated in cultured fibroblasts derived from skin of subjects with varicose veins as it is in venous smooth muscle cells. Circulation. 2002;106:479–83.

    Article  CAS  PubMed  Google Scholar 

  74. Herrick SE, Ireland GW, Simon D, McCollum CN, Ferguson MW. Venous ulcer fibroblasts compared with normal fibroblasts show differences in collagen but not fibronectin production under both normal and hypoxic conditions. J Invest Dermatol. 1996;106:187–93.

    Article  CAS  PubMed  Google Scholar 

  75. Holbrook KA, Byers PH. Skin is a window on heritable disorders of connective tissue. Am J Med Genet. 1989;34:105–21.

    Article  CAS  PubMed  Google Scholar 

  76. Seemuller U, Arnhold M, Fritz H, Wiedenmann K, Machleidt W, Heinzel R, et al. The acid-stable proteinase inhibitor of human mucous secretions (HUSI-I, antileukoprotease). Complete amino acid sequence as revealed by protein and cDNA sequencing and structural homology to whey proteins and Red Sea turtle proteinase inhibitor. FEBS Lett. 1986;199:43–8.

    Article  CAS  PubMed  Google Scholar 

  77. Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J. 1993;7:1475–82.

    Article  CAS  PubMed  Google Scholar 

  78. Mukherjee BB, Nemir M, Beninati S, Cordella-Miele E, Singh K, Chackalaparampil I, et al. Interaction of osteopontin with fibronectin and other extracellular matrix molecules. Ann N Y AcadSci. 1995;760:201–12.

    Article  CAS  Google Scholar 

  79. Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL. Altered wound healing in mice lacking a functional osteopontin gene (spp1). J Clin Invest. 1998;101:1468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, et al. Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res. 2001;88:1080–7.

    Article  CAS  PubMed  Google Scholar 

  81. Lane TF, Sage EH. The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J. 1994;8:163–73.

    Article  CAS  PubMed  Google Scholar 

  82. Masson S, Arosio B, Luvara G, Gagliano N, Fiordaliso F, Santambrogio D, et al. Remodelling of cardiac extracellular matrix during beta-adrenergic stimulation: upregulation of SPARC in the myocardium of adult rats. J Mol Cell Cardiol. 1998;30:1505–14.

    Article  CAS  PubMed  Google Scholar 

  83. Cario E, Goebell H, Dignass AU. Factor XIII modulates intestinal epithelial wound healing in vitro. Scand J Gastroenterol. 1999;34:485–90.

    Article  CAS  PubMed  Google Scholar 

  84. El-Hakim IE. The effect of fibrin stabilizing factor (F.XIII) on healing of bone defects in normal and uncontrolled diabetic rats. Int J Oral Maxillofac Surg. 1999;28:304–8.

    Article  CAS  PubMed  Google Scholar 

  85. Fraccarollo D, Bauersachs J, Kellner M, Galuppo P, Ertl G. Cardioprotection by long-term ET(A) receptor blockade and ACE inhibition in rats with congestive heart failure: mono-versus combination therapy. Cardiovasc Res. 2002;54:85–94.

    Article  CAS  PubMed  Google Scholar 

  86. Fraccarollo D, Galuppo P, Hildemann S, Christ M, Ertl G, Bauersachs J, et al. J Am Coll Cardiol. 2003;42:1666–73.

    Article  CAS  PubMed  Google Scholar 

  87. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. Betaadrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation. 2000;101:2103–9.

    Article  CAS  PubMed  Google Scholar 

  88. Wei S, Chow LT, Sanderson JE. Effect of carvedilol in comparison with metoprolol on myocardial collagen postinfarction. J Am Coll Cardiol. 2000;36:276–81.

    Article  CAS  PubMed  Google Scholar 

  89. Silvestre JS, Heymes C, Oubenaissa A, Robert V, Aupetit-Faisant B, Carayon A, et al. Activation of cardiac aldosterone production in rat myocardial infarction: effect of angiotensin II receptor blockade and role in cardiac fibrosis. Circulation. 1999;99:2694–701.

    Article  CAS  PubMed  Google Scholar 

  90. Fraccarollo D, Galuppo P, Bauersachs J, Ertl G. Collagen accumulation after myocardial infarction: effects of ETA receptor blockade and implications for early remodeling. Cardiovasc Res. 2002;54:559–67.

    Article  CAS  PubMed  Google Scholar 

  91. Rosenson RS, Tangney CC, Casey LC. Inhibition of proinflammatory cytokine production by pravastatin. Lancet. 1999;353:983–4.

    Article  CAS  PubMed  Google Scholar 

  92. Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, et al. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2002;105:868–73.

    Article  CAS  PubMed  Google Scholar 

  93. Tiefenbacher CP, Kapitza J, Dietz V, Lee CH, Niroomand F. Reduction of myocardial infarct size by fluvastatin. Am J Physiol Heart Circ Physiol. 2003;285:H59–64.

    Article  CAS  PubMed  Google Scholar 

  94. Whittle J, Conigliaro J, Good CB, Kelley ME, Skanderson M. Understanding of the benefits of coronary revascularization procedures among patients who are offered such procedures. Am Heart J. 2007 Oct;154(4):662–8.

    Article  PubMed  Google Scholar 

  95. Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ. Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J. 2013 Jun;34(23):1714–22.

    Article  PubMed  CAS  Google Scholar 

  96. Kren L, Meluzin J, Pavlovsky Z, Mayer J, Kala P, Groch L, et al. Experimental model of myocardial infarction: histopathology and reperfusion damage revisited. Pathol Res Pract. 2010;206(9):647–50.

    Article  PubMed  Google Scholar 

  97. Sluijter JP, Condorelli G, Davidson SM, Engel FB, Ferdinandy P, Hausenloy DJ, et al. Nucleus of the European Society of Cardiology Working Group Cellular Biology of the Heart. Novel therapeutic strategies for cardioprotection. Pharmacol Ther. 2014;144(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  98. Tsamatsoulis M, Kapelios CJ, Katsaros L, Vakrou S, Sousonis V, Sventzouri S, et al. Cardioprotective effects of intracoronary administration of 4-chlorodiazepam in small and large animal models of ischemia-reperfusion. Int J Cardiol. 2016 Dec 1;224:9095.

    Article  Google Scholar 

  99. Spartalis E, Tomos P, Moris D, Athanasiou A, Markakis C, Spartalis MD, et al. Role of platelet-rich plasma in ischemic heart disease: an update on the latest evidence.World. J Cardiol. 2015 Oct 26;7(10):665–70.

    Google Scholar 

  100. Mishra A, Velotta J, Brinton TJ, Wang X, Chang S, Palmer O, et al. RevaTenplatelet-rich plasma improves cardiac function after myocardial injury. Cardiovasc Revasc Med. 2011;12(3):158–63.

    Article  PubMed  Google Scholar 

  101. Li XH, Zhou X, Zeng S, Ye F, Yun JL, Huang TG, et al. Effects of intramyocardial injection of platelet-rich plasma on the healing process after myocardial infarction. Coron Artery Dis. 2008 Aug;19(5):363–70.

    Article  PubMed  Google Scholar 

  102. Wehberg KE, Answini G, Wood D, Todd J, Julian J, Ogburn N, et al. Intramyocardial injection of autologous platelet-rich plasma combined with transmyocardial revascularization. Cell Transplant. 2009;18(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  103. Gemmati D, Zeri G, Orioli E, Mari R, Moratelli S, Vigliano M, et al. Factor XIII-A dynamics in acute myocardial infarction: a novel prognostic biomarker? Thromb Haemost. 2015;114(1):123–32.

    PubMed  Google Scholar 

  104. Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126:551–68.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signalling and therapy. Circ Res. 2008;103:1204–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Korf-Klingebiel M, Kempf T, Sauer T, Brinkmann E, Fischer P, Meyer GP, et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J. 2008;29:2851–8.

    Article  PubMed  Google Scholar 

  108. Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell. 2011;8:389–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U. Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc. 2011;6:689–700.

    Article  CAS  PubMed  Google Scholar 

  110. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489:322–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zohlnhofer D, Dibra A, Koppara T, de Waha A, Ripa RS, Kastrup J, et al. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol. 2008;51:1429–37.

    Article  PubMed  CAS  Google Scholar 

  114. Najjar SS, Rao SV, Melloni C, Raman SV, Povsic TJ, Melton L, et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA. 2011;305:1863–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, et al. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation. 2012;126:1728–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Hinkel R, El-Aouni C, Olson T, Horstkotte J, Mayer S, Muller S, et al. Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell mediated cardioprotection. Circulation. 2008;117:2232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Korf-Klingebiel M, Kempf T, Schluter KD, Willenbockel C, Brod T, Heineke J, et al. Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation. 2011;123:504–14.

    Article  CAS  PubMed  Google Scholar 

  118. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5:54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yaniz-Galende E, Chen J, Chemaly ER, Liang L, Hulot JS, McCollum L, et al. Stem cell factor gene transfer promotes cardiac repair after myocardial infarction via in situ recruitment and expansion of c-kit+ cells. Circ Res. 2012;111:1434–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, et al. Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci USA. 2010;107:21110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jarvinen TA, Ruoslahti E. Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in mice. Proc Natl Acad Sci USA. 2010;107:21671–6.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ziegler M, Elvers M, Baumer Y, Leder C, Ochmann C, Schonberger T, et al. The bispecific SDF1-GPVI fusion protein preserves myocardial function after transient ischemia in mice. Circulation. 2012;125:685–96.

    Article  CAS  PubMed  Google Scholar 

  123. Schellenberger V, Wang CW, Geething NC, Spink BJ, Campbell A, To W, et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol. 2009;27:1186–90.

    Article  CAS  PubMed  Google Scholar 

  124. Kanki S, Segers VF, Wu W, Kakkar R, Gannon J, Sys SU, et al. Stromal cell-derived factor-1 retention and cardioprotection for ischemic myocardium. Circ Heart Fail. 2011;4:509–18.

    Article  CAS  PubMed  Google Scholar 

  125. D’Alessandra Y, Pompilio G, Capogrossi MC. MicroRNAs and myocardial infarction. Curr Opin Cardiol. 2012;27:228–35.

    Article  PubMed  Google Scholar 

  126. Roy S, Sen CK. MiRNA in innate immune responses: novel players in wound inflammation. Physiol Genomics. 2011;43:557–65.

    Article  CAS  PubMed  Google Scholar 

  127. van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papageorgiou, N., Tousoulis, D. (2019). Healing of Myocardial Infarction. In: Cokkinos, D. (eds) Myocardial Preservation. Springer, Cham. https://doi.org/10.1007/978-3-319-98186-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98186-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98185-7

  • Online ISBN: 978-3-319-98186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics