Skip to main content

Bridge to Recovery (BTR)

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Cardiovascular Medicine ((CVM))

  • 2581 Accesses

Abstract

the use of a durable device to allow recovery from chronic cardiac failure (at least 3 months in duration).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller J, Wallukat G, Weng YG, Dandel M, Spiegelsberger S, Semrau S, et al. Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation. 1997;96(2):542–9.

    Article  CAS  PubMed  Google Scholar 

  2. Hetzer R, Muller J, Weng Y, Wallukat G, Spiegelsberger S, Loebe M. Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg. 1999;68(2):742–9.

    Article  CAS  PubMed  Google Scholar 

  3. Levin HR, Oz MC, Catanese KA, Rose EA, Burkhoff D. Transient normalization of systolic and diastolic function after support with a left ventricular assist device in a patient with dilated cardiomyopathy. J Heart Lung Transplant. 1996;15(8):840–2.

    CAS  PubMed  Google Scholar 

  4. Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation. 1995;91(11):2717–20.

    Article  CAS  PubMed  Google Scholar 

  5. Burkhoff D, Klotz S, Mancini DM. LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J Card Fail. 2006;12(3):227–39.

    Article  PubMed  Google Scholar 

  6. Madigan JD, Barbone A, Choudhri AF, Morales DL, Cai B, Oz MC, et al. Time course of reverse remodeling of the left ventricle during support with a left ventricular assist device. J Thorac Cardiovasc Surg. 2001;121(5):902–8.

    Article  CAS  PubMed  Google Scholar 

  7. Drakos SG, Wever-Pinzon O, Selzman CH, Gilbert EM, Alharethi R, Reid BB, et al. Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery. J Am Coll Cardiol. 2013;61(19):1985–94.

    Article  PubMed  Google Scholar 

  8. Birks EJ. Molecular changes after left ventricular assist device support for heart failure. Circ Res. 2013;113(6):777–91.

    Article  CAS  PubMed  Google Scholar 

  9. Hall JL, Fermin DR, Birks EJ, Barton PJ, Slaughter M, Eckman P, et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol. 2011;57(6):641–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akhter SA, D’Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE, et al. Reversal of impaired myocardial beta-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2010;29(6):603–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ogletree ML, Sweet WE, Talerico C, Klecka ME, Young JB, Smedira NG, et al. Duration of left ventricular assist device support: effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant. 2010;29(5):554–61.

    Article  PubMed  Google Scholar 

  12. Klotz S, Barbone A, Reiken S, Holmes JW, Naka Y, Oz MC, et al. Left ventricular assist device support normalizes left and right ventricular beta-adrenergic pathway properties. J Am Coll Cardiol. 2005;45(5):668–76.

    Article  PubMed  Google Scholar 

  13. Klotz S, Burkhoff D, Garrelds IM, Boomsma F, Danser AH. The impact of left ventricular assist device-induced left ventricular unloading on the myocardial renin-angiotensin-aldosterone system: therapeutic consequences? Eur Heart J. 2009;30(7):805–12.

    Article  CAS  PubMed  Google Scholar 

  14. Frazier OH, Benedict CR, Radovancevic B, Bick RJ, Capek P, Springer WE, et al. Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg. 1996;62(3):675–81. discussion 81-2

    Article  CAS  PubMed  Google Scholar 

  15. Saito S, Matsumiya G, Sakaguchi T, Miyagawa S, Yamauchi T, Kuratani T, et al. Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant. 2010;29(6):672–9.

    Article  PubMed  Google Scholar 

  16. Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4(4):425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol. 2012;60(24):2465–72.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frazier OH, Myers TJ. Left ventricular assist system as a bridge to myocardial recovery. Ann Thorac Surg. 1999;68(2):734–41.

    Article  CAS  PubMed  Google Scholar 

  19. Komoda T, Komoda S, Dandel M, Weng Y, Hetzer R. Explantation of INCOR left ventricular assist device after myocardial recovery. J Card Surg. 2008;23(6):642–7.

    Article  PubMed  Google Scholar 

  20. Mueller J, Wallukat G, Weng Y, Dandel M, Ellinghaus P, Huetter J, et al. Predictive factors for weaning from a cardiac assist device. An analysis of clinical, gene expression, and protein data. J Heart Lung Transplant. 2001;20(2):202.

    Article  CAS  PubMed  Google Scholar 

  21. Loebe M, Weng Y, Muller J, Dandel M, Halfmann R, Spiegelsberger S, et al. Successful mechanical circulatory support for more than two years with a left ventricular assist device in a patient with dilated cardiomyopathy. J Heart Lung Transplant. 1997;16(11):1176–9.

    CAS  PubMed  Google Scholar 

  22. Liang H, Lin H, Weng Y, Dandel M, Hetzer R. Prediction of cardiac function after weaning from ventricular assist devices. J Thorac Cardiovasc Surg. 2005;130(6):1555–60.

    Article  PubMed  Google Scholar 

  23. Hetzer R, Muller JH, Weng Y, Meyer R, Dandel M. Bridging-to-recovery. Ann Thorac Surg. 2001;71(3 Suppl):S109–13. discussion S14-5

    Article  CAS  PubMed  Google Scholar 

  24. Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E, et al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J. 2011;32(9):1148–60.

    Article  PubMed  Google Scholar 

  25. Estep JD, Chang SM, Bhimaraj A, Torre-Amione G, Zoghbi WA, Nagueh SF. Imaging for ventricular function and myocardial recovery on nonpulsatile ventricular assist devices. Circulation. 2012;125:2265–77.

    Article  PubMed  Google Scholar 

  26. Drakos SG, Mehra MR. Clinical myocardial recovery during long-term mechanical support in advanced heart failure: insights into moving the field forward. J Heart Lung Transplant. 2016;35(4):413–20.

    Article  PubMed  Google Scholar 

  27. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355(18):1873–84.

    Article  CAS  PubMed  Google Scholar 

  28. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, et al. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation. 2011;123(4):381–90.

    Article  CAS  PubMed  Google Scholar 

  29. Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN. Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol. 2007;43(3):231–42.

    Article  CAS  PubMed  Google Scholar 

  30. Aaronson KD, Pagani FD, Maybaum SW, Feldman DS, Bogaev RC, O’Connell JB, Boyce SW, McGee EW, Sun BC, Goldstein DJ, Frazier OH, Myles JD, Weatherwax KJ, Basobas L, McGowan L, Farrar DJ, Yacoub MH, Birks EJ, Miller LW. Combination therapy with pulsatile left ventricular assist device, heart failure medication and clenbuterol in chronic heart failure: results from HARPS. J Heart Lung Transplant. 2011;30:S8–9. abstract.

    Article  Google Scholar 

  31. Patel SR, Saeed O, Murthy S, Bhatia V, Shin JJ, Wang D, et al. Combining neurohormonal blockade with continuous-flow left ventricular assist device support for myocardial recovery: a single-arm prospective study. J Heart Lung Transplant. 2013;32(3):305–12.

    Article  PubMed  Google Scholar 

  32. Mancini DM, Beniaminovitz A, Levin H, Catanese K, Flannery M, Ditullio M, et al. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation. 1998;98(22):2383–9.

    Article  CAS  PubMed  Google Scholar 

  33. Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow-up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–21.

    Article  PubMed  Google Scholar 

  34. Wever-Pinzon O, Drakos SG, McKellar SH, Horne BD, Caine WT, Kfoury AG, et al. Cardiac recovery during long-term left ventricular assist device support. J Am Coll Cardiol. 2016;68(14):1540–53.

    Article  PubMed  Google Scholar 

  35. Topkara VK, Garan AR, Fine B, Godier-Furnemont AF, Breskin A, Cagliostro B, et al. Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the interagency registry for mechanically assisted circulatory support (INTERMACS). Circ Heart Fail. 2016;9(7).

    Google Scholar 

  36. Drakos SG, Kfoury AG, Stehlik J, Selzman CH, Reid BB, Terrovitis JV, et al. Bridge to recovery: understanding the disconnect between clinical and biological outcomes. Circulation. 2012;126(2):230–41.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dandel M, Weng Y, Siniawski H, Potapov E, Lehmkuhl HB, Hetzer R. Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation. 2005;112(9 Suppl):I37–45.

    PubMed  Google Scholar 

  38. Goldstein DJ, Maybaum S, MacGillivray TE, Moore SA, Bogaev R, Farrar DJ, et al. Young patients with nonischemic cardiomyopathy have higher likelihood of left ventricular recovery during left ventricular assist device support. J Card Fail. 2012;18(5):392–5.

    Article  PubMed  Google Scholar 

  39. Givertz MM, Mann DL. Epidemiology and natural history of recovery of left ventricular function in recent onset dilated cardiomyopathies. Curr Heart Fail Rep. 2013;10(4):321–30.

    Article  CAS  PubMed  Google Scholar 

  40. Dandel M, Weng Y, Siniawski H, Potapov E, Drews T, Lehmkuhl HB, et al. Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation. 2008;118(14 Suppl):S94–105.

    Article  PubMed  Google Scholar 

  41. Pan S, Aksut B, Wever-Pinzon OE, Rao SD, Levin AP, Garan AR, et al. Incidence and predictors of myocardial recovery on long-term left ventricular assist device support: results from the united network for organ sharing database. J Heart Lung Transplant. 2015;34(12):1624–9.

    Article  PubMed  Google Scholar 

  42. Basuray A, French B, Ky B, Vorovich E, Olt C, Sweitzer N, et al. Response to letter regarding article, “heart failure with recovered ejection fraction: clinical description, biomarkers, and outcomes”. Circulation. 2015;131(6):e344.

    Article  PubMed  Google Scholar 

  43. Krabatsch T, Schweiger M, Dandel M, Stepanenko A, Drews T, Potapov E, et al. Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann Thorac Surg. 2011;91(5):1335–40.

    Article  PubMed  Google Scholar 

  44. Klotz S, Deng MC, Stypmann J, Roetker J, Wilhelm MJ, Hammel D, et al. Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Ann Thorac Surg. 2004;77(1):143–9. discussion 9-50

    Article  PubMed  Google Scholar 

  45. Thohan V, Stetson SJ, Nagueh SF, Rivas-Gotz C, Koerner MM, Lafuente JA, et al. Cellular and hemodynamics responses of failing myocardium to continuous flow mechanical circulatory support using the DeBakey-noon left ventricular assist device: a comparative analysis with pulsatile-type devices. J Heart Lung Transplant. 2005;24(5):566–75.

    Article  PubMed  Google Scholar 

  46. Haft J, Armstrong W, Dyke DB, Aaronson KD, Koelling TM, Farrar DJ, et al. Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices. Circulation. 2007;116(11 Suppl):I8–15.

    PubMed  Google Scholar 

  47. John R, Boyle A, Pagani F, Miller L. Physiologic and pathologic changes in patients with continuous-flow ventricular assist devices. J Cardiovasc Transl Res. 2009;2(2):154–8.

    Article  PubMed  Google Scholar 

  48. Guan Y, Karkhanis T, Wang S, Rider A, Koenig SC, Slaughter MS, et al. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artif Organs. 2010;34(7):529–36.

    Article  PubMed  Google Scholar 

  49. Kato TS, Chokshi A, Singh P, Khawaja T, Cheema F, Akashi H, et al. Effects of continuous-flow versus pulsatile-flow left ventricular assist devices on myocardial unloading and remodeling. Circ Heart Fail. 2011;4(5):546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jacobs S, Geens J, Rega F, Burkhoff D, Meyns B. Continuous-flow left ventricular assist devices induce left ventricular reverse remodeling. J Heart Lung Transplant. 2013;32(4):466–8.

    Article  PubMed  Google Scholar 

  51. Feldman DS, Moazami N, Adamson PB, Vierecke J, Raval N, et al. The utility of a wireless implantable hemodynamic monitoring system in patients requiring mechanical circulatory support. ASAIO J. 2018;64(3):301–8.

    Article  PubMed  Google Scholar 

  52. Klotz S, Danser AH, Foronjy RF, Oz MC, Wang J, Mancini D, et al. The impact of angiotensin-converting enzyme inhibitor therapy on the extracellular collagen matrix during left ventricular assist device support in patients with end-stage heart failure. J Am Coll Cardiol. 2007;49(11):1166–74.

    Article  CAS  PubMed  Google Scholar 

  53. Feldman D, Elton TS, Menachemi DM, Wexler RK. Heart rate control with adrenergic blockade: clinical outcomes in cardiovascular medicine. Vasc Health Risk Manag. 2010;6:387–97.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dandel M, Weng Y, Siniawski H, Potapov E, Krabatsch T, Lehmkuhl HB, et al. Pre-explant stability of unloading-promoted cardiac improvement predicts outcome after weaning from ventricular assist devices. Circulation. 2012;126(11 Suppl 1):S9–19.

    Article  PubMed  Google Scholar 

  55. Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, et al. Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD working group. Circulation. 2007;115(19):2497–505.

    Article  PubMed  Google Scholar 

  56. Dandel M, Hetzer R. Echocardiographic strain and strain rate imaging--clinical applications. Int J Cardiol. 2009;132(1):11–24.

    Article  PubMed  Google Scholar 

  57. Dandel M, Hetzer R. Myocardial recovery during mechanical circulatory support: weaning and explantation criteria. Heart Lung Vessel. 2015;7(4):280–8.

    PubMed  PubMed Central  Google Scholar 

  58. Stainback RF, Estep JD, Agler DA et al. Echocardiography in the management of patients with left ventricular assist devices: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(8):853–909. https://doi.org/10.1016/j.echo.2015.05.008.

    Article  PubMed  Google Scholar 

  59. Ando M, Nishimura T, Takewa Y, Ogawa D, Yamazaki K, Kashiwa K, et al. What is the ideal off-test trial for continuous-flow ventricular-assist-device explantation? Intracircuit back-flow analysis in a mock circulation model. J Artif Organs. 2011;14(1):70–3.

    Article  PubMed  Google Scholar 

  60. George RS, Sabharwal NK, Webb C, Yacoub MH, Bowles CT, Hedger M, et al. Echocardiographic assessment of flow across continuous-flow ventricular assist devices at low speeds. J Heart Lung Transplant. 2010;29(11):1245–52.

    Article  PubMed  Google Scholar 

  61. Potapov EV, Schweiger M, Krabatsch T. Percutaneous balloon occlusion of a left ventricular assist device outflow cannula to facilitate evaluation of myocardial recovery. J Heart Lung Transplant. 2011;30(11):1300–1.

    Article  PubMed  Google Scholar 

  62. Vierecke J, Hernanedes-Enriquez M, Dandel M, Muller M, Stawowy P, Dreysse S, et al. Percutaneous balloon occlusion of a left ventricular assist device outflow cannula during right heart catheterization with pumpstop as part of the evaluation of myocardial recovery. J Heart Lung Transplant. 2014;33(4):S156–S.

    Article  Google Scholar 

  63. Dandel M, Knosalla C, Hetzer R. Contribution of ventricular assist devices to the recovery of failing hearts: a review and the berlin heart Center experience. Eur J Heart Fail. 2014;16(3):248–63.

    Article  PubMed  Google Scholar 

  64. Phan K, Huo YR, Zhao DF, Yan TD, Tchantchaleishvili V. Ventricular recovery and pump explantation in patients supported by left ventricular assist devices: a systematic review. ASAIO J. 2016;62(3):219–31.

    Article  PubMed  Google Scholar 

  65. Birks EJ, George RS, Firouzi A, Wright G, Bahrami T, Yacoub MH, et al. Long-term outcomes of patients bridged to recovery versus patients bridged to transplantation. J Thorac Cardiovasc Surg. 2012;144(1):190–6.

    Article  PubMed  Google Scholar 

  66. Schweiger M, Potapov E, Vierecke J, Stepanenko A, Hetzer R, Krabatsch T. Expeditious and less traumatic explantation of a heartware LVAD after myocardial recovery. ASAIO J. 58(5):542–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane K. Vierecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vierecke, J.K. (2019). Bridge to Recovery (BTR). In: Feldman, D., Mohacsi, P. (eds) Heart Failure. Cardiovascular Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-98184-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98184-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98182-6

  • Online ISBN: 978-3-319-98184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics