Skip to main content

Energy Gain and Loss Mechanisms in Plasmas and Reactors

  • Chapter
  • First Online:
Book cover Nuclear Fusion

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3934 Accesses

Abstract

The three major sources of radiation loss from a plasma are described: bremsstrahlung (free-free), line (bound-bound), and recombination (free-bound) radiation are shown and the impact of these radiative mechanisms are discussed from the standpoint of impurities in low-Z fusion plasmas. A fourth potential radiation loss term in magnetically confined plasmas, synchrotron radiation, is also discussed. The optical thickness of the plasma is discussed to contrast the methods used to calculate radiation loss in a magnetically confined plasma vis-a-vis an inertially confined plasma are shown, with the coronal model for the former and the Saha equation and more complex models for the latter. The radiation in transient situations is discussed, including the non-LTE effects found in inertially confined plasma. The basic Lawson criterion is introduced in order to form an overall energy balance for the plasma. The equivalent rho-R condition for inertial confinement is introduced. Energy balance for reactors with other features including blanket multiplication and direct conversion is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M.: Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1974)

    MATH  Google Scholar 

  2. Biedenharn, L.C.: A note on Sommerfeld’s bremsstrahlung formula. Phys. Rev. 102, 262–263 (1956). http://link.aps.org/doi/10.1103/PhysRev.102.262

    Article  Google Scholar 

  3. Chung, H.K., Chen, M., Morgan, W., Ralchenko, Y., Lee, R.: FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Dens. Phys. 1(1), 3–12 (2005). http://dx.doi.org/10.1016/j.hedp.2005.07.001; http://www.sciencedirect.com/science/article/pii/S1574181805000029

    Article  Google Scholar 

  4. Colchin, R.: Target plasma trapping. Nucl. Fusion 11(4), 329 (1971). http://stacks.iop.org/0029-5515/11/i=4/a=002

    Article  Google Scholar 

  5. Davis, J., Jacobs, V.L., Kepple, P.C., Blaha, M.: Radiative cooling of tokamak plasmas due to multiply-charged Fe impurity ions. J. Quant. Spectrosc. Radiat. Transf. 17, 139–147 (1977)

    Article  Google Scholar 

  6. Dunn, G.H., Van Zyl, B.: Electron impact dissociation of \({\mathrm {H}}_{2}^{+}\). Phys. Rev. 154, 40–51 (1967). http://link.aps.org/doi/10.1103/PhysRev.154.40

    Article  Google Scholar 

  7. Fowler, T.K.: Effect of energy degradation on the critical current in an OGRA-type device. Oak Ridge National Laboratory Technical Report, ORNL-3037 (1960)

    Google Scholar 

  8. Fraley, G.S., Linnebur, E.J., Mason, R.J., Morse, R.L.: Thermonuclear burn characteristics of compressed deuterium-tritium microspheres. Phys. Fluids 17(2), 474–489 (1974). http://dx.doi.org/10.1063/1.1694739; http://scitation.aip.org/content/aip/journal/pof1/17/2/10.1063/1.1694739

  9. Ginzburg, V.L.: Important elementary processes in cosmic-ray astrophysics and X-ray astronomy. In: DeWitt, C., Schatzman, E., Veron, P. (eds.) High Energy Astrophysics, vol. 1. Gordon and Breach, New York (1967)

    Google Scholar 

  10. Griem, H.R.: Principles of Plasma Spectroscopy. Cambridge University Press, Cambridge (1997). Cambridge Books Online, http://dx.doi.org/10.1017/CBO9780511524578

  11. Hopkins, G.R., Rawls, J.M.: Impurity radiation from medium density plasmas. Nucl. Technol. 36(2), 171–186 (1977)

    Article  Google Scholar 

  12. International Atomic Energy Agency: ALLADIN database. https://www-amdis.iaea.org/ALADDIN/ (2016)

  13. Janev, R.K., Langer, W.D., Post, D.E., Evans, K.: Electron impact collision processes. In: Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients, pp. 17–114. Springer, Berlin (1987). http://dx.doi.org/10.1007/978-3-642-71935-6_2

    Chapter  Google Scholar 

  14. Karzas, W.J., Latter, R.: Electron radiative transitions in a coulomb field. Astrophys. J. Suppl 6, 167 (1961). https://doi.org/10.1086/190063

    Article  Google Scholar 

  15. Kieffer, L.J., Dunn, G.H.: Dissociative ionization of H2 and D2. Phys. Rev. 158, 61–65 (1967). http://link.aps.org/doi/10.1103/PhysRev.158.61

    Article  Google Scholar 

  16. Kieffer, L.J., Dunn, G.H.: Dissociative ionization of H2 and D2. Phys. Rev. 164, 270–270 (1967). http://link.aps.org/doi/10.1103/PhysRev.164.270.5

    Article  Google Scholar 

  17. Kramers, H.A.: Xciii. On the theory of X-ray absorption and of the continuous x-ray spectrum. Philos. Mag. Ser. 6 46(275), 836–871 (1923). https://doi.org/10.1080/14786442308565244

    Article  Google Scholar 

  18. Kraus, D., Chapman, D.A., Kritcher, A.L., Baggott, R.A., Bachmann, B., Collins, G.W., Glenzer, S.H., Hawreliak, J.A., Kalantar, D.H., Landen, O.L., Ma, T., Le Pape, S., Nilsen, J., Swift, D.C., Neumayer, P., Falcone, R.W., Gericke, D.O., Döppner, T.: X-ray scattering measurements on imploding CH spheres at the National Ignition Facility. Phys. Rev. E 94, 011202 (2016). http://link.aps.org/doi/10.1103/PhysRevE.94.011202

    Article  Google Scholar 

  19. Kukushkin, A.B., Minashin, P.V., Polevoi, A.R.: Impact of magnetic field inhomogeneity on electron cyclotron radiative loss in tokamak reactors. Plasma Phys. Rep. 38(3), 187–196 (2012). DOI 10.1134/S1063780X12030038. http://dx.doi.org/10.1134/S1063780X12030038

    Article  Google Scholar 

  20. Lawson, J.D.: Some criteria for a power producing thermonuclear reactor. Technical report, Atomic Energy Research Establishment, Harwell, Berkshire (1955). https://www.euro-fusion.org/wpcms/wp-content/uploads/2012/10/dec05-aere-gpr1807.pdf

  21. Lotz, W.: Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium. Z. Phys. 216(3), 241–247 (1968). http://dx.doi.org/10.1007/BF01392963

    Article  Google Scholar 

  22. More, R.M.: Atoms in dense plasmas. In: Briand, J.P. (ed.) Atoms in Unusual Situations, pp. 155–215. Springer US, Boston (1986). http://dx.doi.org/10.1007/978-1-4757-9337-6_7

    Chapter  Google Scholar 

  23. Morozov, D.K., Baronova, E.O., Senichenkov, I.Y.: Impurity radiation from a tokamak plasma. Plasma Phys. Rep. 33(11), 906–922 (2007). http://dx.doi.org/10.1134/S1063780X07110037

    Article  Google Scholar 

  24. Planck, M.: Zur quantenstatistik des bohrschen atommodells (On the quantum statistics of Bohr’s atom model). Ann. Phys. 380, 673–684 (1924)

    Article  Google Scholar 

  25. Post, D., Jensen, R., Tarter, C., Grasberger, W., Lokke, W.: Steady-state radiative cooling rates for low-density, high-temperature plasmas. At. Data Nucl. Data Tables 20(5), 397–439 (1977). http://dx.doi.org/10.1016/0092-640X(77)90026-2; http://www.sciencedirect.com/science/article/pii/0092640X77900262

    Article  Google Scholar 

  26. Saha, M.N.: LIII. Ionization in the solar chromosphere. Philos. Mag. Ser. 6 40(238), 472–488 (1920). http://dx.doi.org/10.1080/14786441008636148

    Article  Google Scholar 

  27. Scott, H., Hansen, S.: Advances in NLTE modeling for integrated simulations. High Energy Dens. Phys. 6(1), 39–47 (2010). http://dx.doi.org/10.1016/j.hedp.2009.07.003; http://www.sciencedirect.com/science/article/pii/S1574181809000834

    Article  Google Scholar 

  28. Seaton, M.J.: Radiative recombination of hydrogenic ions. Mon. Not. R. Astron. Soc. 119(2), 81–89 (1959). https://doi.org/10.1093/mnras/119.2.81; http://mnras.oxfordjournals.org/content/119/2/81.abstract

    Article  MathSciNet  Google Scholar 

  29. Sommerfeld, A.J.F.: Atombau und Spektrallinien, vol. 2. Ungar, New York (1953)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morse, E. (2018). Energy Gain and Loss Mechanisms in Plasmas and Reactors. In: Nuclear Fusion. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-98171-0_4

Download citation

Publish with us

Policies and ethics