Skip to main content

The Role of Autophagy in Mesenchymal Stem Cell-Based Suppression of Immune Response

  • Chapter
  • First Online:
Autophagy in Health and Disease

Abstract

Mesenchymal stem cells (MSCs) are, due to their capacity for differentiation, immunomodulatory and proangiogenic characteristics, widely used as new therapeutic agents for the treatment of autoimmune, ischemic and degenerative diseases. One of the major barriers for successful transplantation of MSCs is their poor survival after engraftment in the inflamed and hypoxic tissues. Since autophagy regulates survival, differentiation potential, immunomodulatory and proangiogenic characteristics of engrafted MSCs, modulation of autophagy in transplanted MSCs may represent a novel strategy to improve MSCs-based therapy. Until now, modulation of autophagy as a new approach for enhancement of functional characteristics of MSCs has been examined in animal models of multiple sclerosis, osteoporosis, diabetes, myocardial infarction, and graft-versus-host disease. Obtained results suggest that regulation of autophagy may represent a new therapeutic approach that will enhance the efficacy of MSC-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MA:

3-Methyladenine

aGVHD:

Acute graft-versus-host disease

Ang-1:

Angiopoietin-1

AT:

Adipose tissue

ATP:

Adenosine triphosphate

BM:

Bone marrow

BMT:

Bone marrow transplantation

CNS:

Central nervous system

DCs:

Dendritic cell

EAE:

Experimental autoimmune encephalomyelitis

ECM:

Extracellular matrix

ECs:

Endothelial cells

EGF:

Epidermal growth factor

EPCs:

Endothelial progenitor cells

FGF-2:

Fibroblast growth factor

GIOP:

Glucocorticoid-induced osteoporosis

HGF:

Hepatic growth factor

HIF-1:

Hypoxia-inducible factor 1

HLA:

Human leukocyte antigen

HLA-G:

Human leukocyte antigen-G

HO-1:

Heme oxygenase-1

IDO:

Indolamine 2,3-dioxygenase

IFN-γ:

Interferon gamma

IL:

Interleukin

IL-1Ra:

IL-1 receptor antagonist

IL-6:

Interleukin-6

LIF:

Leukocyte inhibitory factor

LPS:

Lipopolysaccharide

MCP-1:

Monocyte chemoattractant protein-1

MHC:

Major histocompatibility complex

MI:

Myocardial infarction

miRNAs:

microRNAs

MMPs:

Matrix metalloproteinases

MS:

Multiple sclerosis

MSCs:

Mesenchymal stem cells

mTOR:

Mammalian target of rapamycin

NK:

Natural killer

NKT:

Natural killer T

NO:

Nitric oxide

PD-1:

Programmed death 1

PGE2:

Prostaglandin E2

PLGF:

Placental growth factor

ROS:

Reactive oxigene species

TGF-α:

Transforming growth factor α

TGF-β:

Transforming growth factor-beta

TGF-β:

Transforming growth factor-β

TNF-α:

Tumor necrosis factor alpha

TSG-6:

Tumor necrosis factor α-stimulated gene 6

UCB:

Umbilical cord blood

VEGF:

Vascular endothelial growth factor

References

  1. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    Article  CAS  PubMed  Google Scholar 

  2. Denton D, Xu T, Kumar S. Autophagy as a pro-death pathway. Immunol Cell Biol. 2015;93:35–42.

    Article  CAS  PubMed  Google Scholar 

  3. Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A, Baldini N. the role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev. 2016;12:621–33.

    Article  CAS  Google Scholar 

  4. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

    CAS  PubMed  Google Scholar 

  5. Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29:5–10.

    Article  CAS  PubMed  Google Scholar 

  6. Markovic BS, Kanjevac T, Harrell CR, Gazdic M, Fellabaum C, Arsenijevic N, Volarevic V. Molecular and cellular mechanisms involved in mesenchymal stem cell-based therapy of inflammatory bowel diseases. Stem Cell Rev. 2018;14:153. https://doi.org/10.1007/s12015-017-9789-2.

    Article  CAS  Google Scholar 

  7. Volarevic V, Ljujic B, Stojkovic P, Lukic A, Arsenijevic N, Stojkovic M. Human stem cell research and regenerative medicine--present and future. Br Med Bull. 2011;99:155–68.

    Article  PubMed  Google Scholar 

  8. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25:2896–902.

    Article  PubMed  Google Scholar 

  9. Volarevic V, Gazdic M, Simovic Markovic B, Jovicic N, Djonov V, Arsenijevic N. Mesenchymal stem cell-derived factors: immuno-modulatory effects and therapeutic potential. Biofactors. 2017;43:633–44.

    Article  CAS  PubMed  Google Scholar 

  10. Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity. 2010;43:255–63.

    Article  CAS  PubMed  Google Scholar 

  11. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  12. Nurkovic J, Volarevic V, Lako M, Armstrong L, Arsenijevic N, Stojkovic M. Aging of stem and progenitor cells: mechanisms, impact on therapeutic potential, and rejuvenation. Rejuvenation Res. 2016;19:3–12.

    Article  PubMed  Google Scholar 

  13. Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M. Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev. 2015;11:280–7.

    Article  CAS  Google Scholar 

  14. Milosavljevic N, Gazdic M, Simovic Markovic B, Arsenijevic A, Nurkovic J, Dolicanin Z, Jovicic N, Jeftic I, Djonov V, Arsenijevic N, Lukic ML, Volarevic V. Mesenchymal stem cells attenuate liver fibrosis by suppressing Th17 cells - an experimental study. Transpl Int. 2018;31:102. https://doi.org/10.1111/tri.13023.

    Article  CAS  PubMed  Google Scholar 

  15. Gazdic M, Arsenijevic A, Markovic BS, Volarevic A, Dimova I, Djonov V, Arsenijevic N, Stojkovic M, Volarevic V. Mesenchymal stem cell-dependent modulation of liver diseases. Int J Biol Sci. 2017;13:1109–17.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Simovic Markovic B, Gazdic M, Arsenijevic A, Jovicic N, Jeremic J, Djonov V, Arsenijevic N, Lukic ML, Volarevic V. Mesenchymal stem cells attenuate cisplatin-induced nephrotoxicity in iNOS-dependent manner. Stem Cells Int. 2017;2017:1315378.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gazdic M, Simovic Markovic B, Vucicevic L, Nikolic T, Djonov V, Arsenijevic N, Trajkovic V, Lukic ML, Volarevic V. Mesenchymal stem cells protect from acute liver injury by attenuating hepatotoxicity of liver natural killer T cells in an inducible nitric oxide synthase- and indoleamine 2,3-dioxygenase-dependent manner. J Tissue Eng Regen Med. 2018;12:e1173. https://doi.org/10.1002/term.2452.

    Article  CAS  PubMed  Google Scholar 

  18. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.

    Article  CAS  PubMed  Google Scholar 

  19. Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res. 2012;35:213–21.

    Article  CAS  PubMed  Google Scholar 

  20. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83:71–6.

    Article  PubMed  Google Scholar 

  21. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107:367–72.

    Article  CAS  PubMed  Google Scholar 

  22. Gazdic M, Simovic Markovic B, Jovicic N, Misirkic-Marjanovic M, Djonov V, Jakovljevic V, Arsenijevic N, Lukic ML, Volarevic V. Mesenchymal stem cells promote metastasis of lung cancer cells by downregulating systemic antitumor immune response. Stem Cells Int. 2017;2017:6294717.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Milosavljevic N, Gazdic M, Simovic Markovic B, Arsenijevic A, Nurkovic J, Dolicanin Z, Djonov V, Lukic ML, Volarevic V. Mesenchymal stem cells attenuate acute liver injury by altering ratio between interleukin 17 producing and regulatory natural killer T cells. Liver Transpl. 2017;23:1040–50.

    Article  PubMed  Google Scholar 

  24. Simovic Markovic B, Nikolic A, Gazdic M, Nurkovic J, Djordjevic I, Arsenijevic N, Stojkovic M, Lukic ML, Volarevic V. Pharmacological inhibition of gal-3 in mesenchymal stem cells enhances their capacity to promote alternative activation of macrophages in dextran sulphate sodium-induced colitis. Stem Cells Int. 2016;2016:2640746.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Poggi A, Prevosto C, Massaro AM, Negrini S, Urbani S, Pierri I, Saccardi R, Gobbi M, Zocchi MR. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J Immunol. 2005;175:6352–60.

    Article  CAS  PubMed  Google Scholar 

  26. Xia X, Tao Q, Ma Q, Chen H, Wang J, Yu H. Growth hormone-releasing hormone and its analogues: significance for MSCs-mediated angiogenesis. Stem Cells Int. 2016;2016:8737589.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther. 2014;143:181–96.

    Article  CAS  PubMed  Google Scholar 

  28. Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E. Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol. 2009;219:563–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ghajar CM, Kachgal S, Kniazeva E, Mori H, Costes SV, George SC, Putnam AJ. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res. 2010;316:813–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol. 2008;294:C675–82.

    Article  CAS  PubMed  Google Scholar 

  31. Watt SM, Gullo F, van der Garde M, Markeson D, Camicia R, Khoo CP, Zwaginga JJ. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull. 2013;108:25–53.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  CAS  PubMed  Google Scholar 

  33. Caplan AI. All MSCs are pericytes? Cell Stem Cell. 2008;3:229–30.

    Article  CAS  PubMed  Google Scholar 

  34. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. de Souza LE, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal stem cells and pericytes: to what extent are they related? Stem Cells Dev. 2016;25:1843–52.

    Article  PubMed  Google Scholar 

  36. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004;24:288–93.

    Article  CAS  PubMed  Google Scholar 

  37. De Luca A, Gallo M, Aldinucci D, Ribatti D, Lamura L, D’Alessio A, De Filippi R, Pinto A, Normanno N. Role of the EGFR ligand/receptor system in the secretion of angiogenic factors in mesenchymal stem cells. J Cell Physiol. 2011;226:2131–8.

    Article  PubMed  Google Scholar 

  38. Merino-González C, Zuñiga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomón C, Aguayo C. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol. 2016;7:24.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K, Hao C, Meng Y, Yu FH, Liu XQ, Shi YF, Wu MC, Zhang L, Wei LX. Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis. 2013;4:e844.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Taylor CT. Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J. 2008;409:19–26.

    Article  CAS  PubMed  Google Scholar 

  41. Li L, Li L, Zhang Z, Jiang Z. Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway. Acta Biochim Biophys Sin (Shanghai). 2015;47:362–7.

    Article  CAS  Google Scholar 

  42. Molaei S, Roudkenar MH, Amiri F, Harati MD, Bahadori M, Jaleh F, Jalili MA, Mohammadi RA. Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions. Blood Res. 2015;50:80–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, Xu H. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev. 2012;21:1321–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Chang TC, Hsu MF, Wu KK. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS One. 2015;10:e0126537.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146:682–95.

    Article  CAS  PubMed  Google Scholar 

  46. Nuschke A, Rodrigues M, Stolz DB, Chu CT, Griffith L, Wells A. Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther. 2014;5:140.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Gao L, Cen S, Wang P, Xie Z, Liu Z, Deng W, Su H, Wu X, Wang S, Li J, Ouyang Y, Wu Y, Shen H. Autophagy improves the immunosuppression of CD4+ T cells by mesenchymal stem cells through transforming growth factor-β1. Stem Cells Transl Med. 2016;5:1496–505.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, Jin M, Wang RX, Peng Y, Zhang Y, Wu C, He X, Wan B, Zhang Y. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy. 2014;10:1301–15.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Sanchez CG, Penfornis P, Oskowitz AZ, Boonjindasup AG, Cai DZ, Dhule SS, Rowan BG, Kelekar A, Krause DS, Pochampally RR. Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis. 2011;32:964–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol. 2015;293:113–21.

    Article  CAS  PubMed  Google Scholar 

  51. Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ, Lee PH. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy. 2014;10:32–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wang L, Fan J, Lin YS, Guo YS, Gao B, Shi QY, Wei BY, Chen L, Yang L, Liu J, Luo ZJ. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells. Mol Med Rep. 2015;11:2711–6.

    Article  CAS  PubMed  Google Scholar 

  53. Henning RJ. Stem cells in cardiac repair. Future Cardiol. 2011;7:99–117.

    Article  PubMed  Google Scholar 

  54. Zhang Z, Yang M, Wang Y, Wang L, Jin Z, Ding L, Zhang L, Zhang L, Jiang W, Gao G, Yang J, Lu B, Cao F, Hu T. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway. Cell Biol Int. 2016;40:671–85.

    Article  CAS  PubMed  Google Scholar 

  55. Liu J, Hao H, Huang H, Tong C, Ti D, Dong L, Chen D, Zhao Y, Liu H, Han W, Fu X. Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. Int J Low Extrem Wounds. 2015;14:63–72.

    Article  CAS  PubMed  Google Scholar 

  56. Liu GY, Jiang XX, Zhu X, He WY, Kuang YL, Ren K, Lin Y, Gou X. ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacol Sin. 2015;36:1473–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell. 2008;30:678–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kim KW, Moon SJ, Park MJ, Kim BM, Kim EK, Lee SH, Lee EJ, Chung BH, Yang CW, Cho ML. Optimization of adipose tissue-derived mesenchymal stem cells by rapamycin in a murine model of acute graft-versus-host disease. Stem Cell Res Ther. 2015;6:202.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Serbian Ministry of Science (ON175069, ON175103) and Faculty of Medical Sciences University of Kragujevac (JP02/09).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volarevic, V., Jakovljevic, J., Harrell, C.R., Fellabaum, C., Arsenijevic, N. (2018). The Role of Autophagy in Mesenchymal Stem Cell-Based Suppression of Immune Response. In: Turksen, K. (eds) Autophagy in Health and Disease. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-98146-8_8

Download citation

Publish with us

Policies and ethics