Skip to main content

Apoptotic Cell Clearance in Gut Tissue: Role of Intestinal Regeneration

  • Chapter
  • First Online:
Autophagy in Health and Disease

Abstract

Intestinal epithelial cells play a critical role in nutrient absorption as well as in protection against infection by pathogenic microorganisms. The cells drop out in a few days, and regeneration occurs subsequently; cells are eliminated by apoptosis. Clearance of dead cells frequently occurs in the intestinal tract, and apoptotic cells and phagocytes cooperate to facilitate cell clearance quickly and efficiently. The complex signaling network for cell clearance is well-understood. In recent years, the mechanism of programmed cell death accompanied by autophagy has been elucidated, and it has become clear that autophagy is involved in inflammation and intestinal tract diseases. In this review, we discuss intestinal regeneration and intestinal diseases through phagocytic clearance and autophagy of apoptotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATG16L1 :

Autophagy-related 16-like 1

ATP:

Adenosine triphosphate

C1q:

Complement 1q

CD:

Crohn’s disease

CD14:

Cluster of differentiation 14

CD31:

Cluster of differentiation 31

CD36:

Cluster of differentiation 36

CD47:

Cluster of differentiation 47

CD91:

Cluster of differentiation 91

CX3CL1:

Chemokine, CX3C motif, ligand 1

EGF:

Epidermal growth factor

GTPase:

Guanosinetriphosphatase

GWAS:

Genome-wide association studies

ICAM3:

Including intercellular adhesion molecule 3

IEL:

Intraepithelial lymphocyte

LDL:

Low density lipoprotein

LPC:

Lysophosphatidylcholine

LRP1:

Low density lipoprotein receptor-related protein 1

MFGE8:

Milk fat globule-EGF-factor 8

NOD2 :

Nucleotide-binding oligomerization domain 2

PtdSer:

Phosphatidylserine

RGD:

Arginine-Glycine-Aspartic Acid

ROS:

Reactive oxygen species

S1P:

Sphingosine-1-phosphate

TGF:

Transforming growth factor

THP-1:

Tamm–Horsfall glycoprotein-1

TIM1:

T-cell immunoglobulin and mucin containing protein-1

TIM4:

T-cell immunoglobulin and mucin containing protein-4

UTP:

Uridine triphosphate

References

  1. Poon IK, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol. 2014;14(3):166–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ogawa N, Shimoyama K, Kawanami T. Apotosisu Saibou no Kuriaransu to Jikomenneki (Clearance of apoptotic cells and autoimmunity). Nihon Rinsho. 2005;63(5):229–32.

    PubMed  Google Scholar 

  3. Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. J Cell Biol. 2010;189(7):1059–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ. 2016;23(6):915–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell. 2010;140(5):619–30.

    Article  CAS  PubMed  Google Scholar 

  6. Saas P, Kaminski S, Perruche S. Prospects of apoptotic cell-based therapies for transplantation and inflammatory diseases. Immunotherapy. 2013;5(10):1055–73.

    Article  CAS  PubMed  Google Scholar 

  7. Ke P, Shao BZ, Xu ZQ, Chen XW, Liu C. Intestinal autophagy and its pharmacological control in inflammatory bowel disease. Front Immunol. 2016;7:695.

    PubMed  Google Scholar 

  8. Chekeni FB, Ravichandran KS. The role of nucleotides in apoptotic cell clearance: implications for disease pathogenesis. J Mol Med (Berl). 2011;89(1):13–22.

    Article  CAS  Google Scholar 

  9. Lauber K, Blumenthal SG, Waibel M, Wesselborg S. Clearance of apoptotic cells: getting rid of the corpses. Mol Cell. 2014;14(3):277–87.

    Article  Google Scholar 

  10. Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol. 2007;7(12):964–74.

    Article  CAS  PubMed  Google Scholar 

  11. Elliott MR, Ravichandran KS. The dynamics of apoptotic cell clearance. Dev Cell. 2016;38(2):147–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461(7261):282–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Springel S. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 2008;22(8):2629–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lauber K, Bohn E, Kröber SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 2003;113(6):717–30.

    Article  CAS  PubMed  Google Scholar 

  15. Luo B, Gan W, Liu Z, Shen Z, Wang J, Shi R, Liu Y, Liu Y, Jiang M, Zhang Z, Wu Y. Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity. 2016;44(2):287–302.

    Article  CAS  PubMed  Google Scholar 

  16. Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, Melville L, Melrose LA, Ogden CA, Nibbs R, Graham G, Combadiere C, Gregory CD. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 2008;112(13):5026–36.

    Article  CAS  PubMed  Google Scholar 

  17. Torr EE, Gardner DH, Thomas L, Goodall DM, Bielemeier A, Willetts R, Griffiths HR, Marshall LJ, Devitt A. Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells. Cell Death Differ. 2012;19(4):671–9.

    Article  CAS  PubMed  Google Scholar 

  18. Weigert A, Cremer S, Schmidt MV, von Knethen A, Angioni C, Geisslinger G, Brüne B. Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood. 2010;115(17):3531–40.

    Article  CAS  PubMed  Google Scholar 

  19. Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brüne B. Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood. 2006;108(5):1635–42.

    Article  CAS  PubMed  Google Scholar 

  20. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148(7):2207–16.

    CAS  PubMed  Google Scholar 

  21. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123(2):321–34.

    Article  CAS  PubMed  Google Scholar 

  22. Segawa K, Suzuki J, Nagata S. Constitutive exposure of phosphatidylserine on viable cells. Proc Natl Acad Sci U S A. 2011;108(48):19246–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417(6885):182–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science. 2004;304(5674):1147–50.

    Article  CAS  PubMed  Google Scholar 

  25. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  PubMed  Google Scholar 

  26. Overstreet MG, Gaylo A, Angermann BR, Hughson A, Hyun YM, Lambert K, Acharya M, Billroth-Maclurg AC, Rosenberg AF, Topham DJ, Yagita H, Kim M, Lacy-Hulbert A, Meier-Schellersheim M, Fowell DJ. Inflammation-induced interstitial migration of effector CD4+ T cells is dependent on integrin αV. Nat Immunol. 2013;14(9):949–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Savill J, Dransfield I, Hogg N, Haslett C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature. 1990;343(6254):170–3.

    Article  CAS  PubMed  Google Scholar 

  28. Park D, Tosello Trampont A-C, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature. 2007;450(7168):430–4.

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi N, Karisola P, Peña Cruz V, Dorfman DM, Jinushi M, Umetsu SE, Butte MJ, Nagumo H, Chernova I, Zhu B, Sharpe AH, Ito S, Dranoff G, Kaplan GG, Casasnovas JM, Umetsu DT, Dekruyff RH, Freeman GJ. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity. 2007;27(6):927–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature. 2007;450(7168):435–9.

    Article  CAS  PubMed  Google Scholar 

  31. Santiago C, Ballesteros A, Martínez Muñoz L, Mellado M, Kaplan GG, Freeman GJ, Casasnovas JM. Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity. 2007;27(6):941–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ezekowitz RA, Sastry K, Bailly P, Warner A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med. 1990;172(6):1785–94.

    Article  CAS  PubMed  Google Scholar 

  33. Ogden CA, Decathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med. 2001;194(6):781–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gregory CD, Devitt A, Moffatt O. Roles of ICAM-3 and CD14 in the recognition and phagocytosis of apoptotic cells by macrophages. Biochem Soc Trans. 1998;26(4):644–9.

    Article  CAS  PubMed  Google Scholar 

  35. Gordon S. Macrophage-restricted molecules: role in differentiation and activation. Immunol Lett. 1999;65(1-2):5–8.

    Article  CAS  PubMed  Google Scholar 

  36. Nakaya M, Tanaka M, Okabe Y, Hanayama R, Nagata S. Opposite effects of rho family GTPases on engulfment of apoptotic cells by macrophages. J Biol Chem. 2006;281(13):8836–42.

    Article  CAS  PubMed  Google Scholar 

  37. Erwig LP, Henson PM. Clearance of apoptotic cells by phagocytes. Cell Death Differ. 2008;15(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  38. Kitano M, Nakaya M, Nakamura T, Nagata S, Matsuda M. Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature. 2008;453(7192):241–5.

    Article  CAS  PubMed  Google Scholar 

  39. Hochreiter Hufford A, Ravichandran KS. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol. 2013;5(1):a008748.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gumienny TL, Brugnera E, Tosello Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, Schedl T, Qin Y, Van Aelst L, Hengartner MO, Ravichandran KS. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell. 2001;107(1):27–41.

    Article  CAS  PubMed  Google Scholar 

  41. Reddien PW, Horvitz HR. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol. 2000;2(3):131–6.

    Article  CAS  PubMed  Google Scholar 

  42. Wu YC, Horvitz HR. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature. 1998;392(6675):501–4.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou Z, Caron E, Hartwieg E, Hall A, Horvitz HR. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev Cell. 2001;1(4):477–89.

    Article  CAS  PubMed  Google Scholar 

  44. Wu YC, Tsai MC, Cheng LC, Chou CJ, Weng NY. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev Cell. 2001;1(4):491–502.

    Article  CAS  PubMed  Google Scholar 

  45. Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16(9):907–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Franz S, Gaipl US, Munoz LE, Sheriff A, Beer A, Kalden JR, Herrmann M. Apoptosis and autoimmunity: when apoptotic cells break their silence. Curr Rheumatol Rep. 2006;8(4):245–7.

    Article  CAS  PubMed  Google Scholar 

  47. Janko C, Franz S, Munoz LE, Siebig S, Winkler S, Schett G, Lauber K, Sheriff A, van der Vlag J, Herrmann M. CRP/anti-CRP antibodies assembly on the surfaces of cell remnants switches their phagocytic clearance toward inflammation. Front Immunol. 2011;2:70.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517(7534):311–20.

    Article  CAS  PubMed  Google Scholar 

  49. Casciola Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179(4):1317–30.

    Article  CAS  PubMed  Google Scholar 

  50. Satsu H, Ishimoto Y, Nakano T, Mochizuki T, Iwanaga T, Shimizu M. Induction by activated macrophage-like THP-1 cells of apoptotic and necrotic cell death in intestinal epithelial Caco-2 monolayers via tumor necrosis factor-alpha. Exp Cell Res. 2006;312(19):3909–19.

    Article  CAS  PubMed  Google Scholar 

  51. Iwanaga T. The involvement of macrophages and lymphocytes in the apoptosis of enterocytes. Arch Histol Cytol. 1995;58(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  52. Merger M, Viney JL, Borojevic R, Steele-Norwood D, Zhou P, Clark DA, Riddell R, Maric R, Podack ER, Croitoru K. Defining the roles of perforin, Fas/FasL, and tumour necrosis factor alpha in T cell induced mucosal damage in the mouse intestine. Gut. 2002;51(2):155–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Iwanaga T. Choujouhisaibou no Saibousi to sono Haijo (Apoptosis of intestinal epithelial cells and their disposal). Igaku no ayumi (J Clin Exp Med). 2008;225(6):507–10.

    CAS  Google Scholar 

  54. Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med. 2000;191(3):435–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Iida T, Onodera K, Nakase H. Role of autophagy in the pathogenesis of inflammatory bowel disease. World J Gastroenterol. 2017;23(11):1944–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Büning C, Cohain A, Cichon S, D’Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H, International IBD Genetics Consortium (IIBDGC), Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Hooper KM, Barlow PG, Stevens C, Henderson P. Inflammatory bowel disease drugs: a focus on autophagy. J Crohns Colitis. 2017;11(1):118–27.

    Article  PubMed  Google Scholar 

  59. Shao B-Z, Han B-Z, Zeng Y-X, Su D-F, Liu C. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin. 2016;37(2):150–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Liu NA, Shi Y, Zhuang S. Autophagy in chronic kidney diseases. Kidney Dis (Basel). 2016;2(1):37–45.

    Article  Google Scholar 

  61. Gump JM, Thorburn A. Autophagy and apoptosis: what is the connection? Trends Cell Biol. 2011;21(7):387–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Canonico B, Cesarini E, Salucci S, Luchetti F, Falcieri E, Di Sario G, Palma F, Papa S. Defective autophagy, mitochondrial clearance and lipophagy in niemann-pick type B lymphocytes. PLoS One. 2016;11(10):e0165780.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Deretic V. Autophagy in leukocytes and other cells: mechanisms, subsystem organization, selectivity, and links to innate immunity. J Leukoc Biol. 2016;100(5):969–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Gao S, Sun D, Wang G, Zhang J, Jiang Y, Li G, Zhang K, Wang L, Huang J, Chen L. Growth inhibitory effect of paratocarpin E, a prenylated chalcone isolated from Euphorbia humifusa Wild., by induction of autophagy and apoptosis in human breast cancer cells. Bioorg Chem. 2016;69:121–8.

    Article  CAS  PubMed  Google Scholar 

  65. Li Y, Yu G, Yuan S, Tan C, Xie J, Ding Y, Lian P, Fu L, Hou Q, Xu B, Wang H. 14,15-Epoxyeicosatrienoic acid suppresses cigarette smoke condensate-induced inflammation in lung epithelial cells by inhibiting autophagy. Am J Physiol Lung Cell Mol Physiol. 2016;311(5):L970–80.

    Article  PubMed  Google Scholar 

  66. Wells JM, Rossi O, Meijerink M, Van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4607–14.

    Article  CAS  PubMed  Google Scholar 

  67. Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev. 2012;245(1):147–63.

    Article  CAS  PubMed  Google Scholar 

  68. Moran AP, Gupta A, Joshi L. Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut. 2011;60(10):1412–25.

    Article  CAS  PubMed  Google Scholar 

  69. Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012;15(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  70. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat. 1974;141(4):537–61.

    Article  CAS  PubMed  Google Scholar 

  71. Okumura R, Kurakawa T, Nakano T, Kayama H, Kinoshita M, Motooka D, Gotoh K, Kimura T, Kamiyama N, Kusu T, Ueda Y, Wu H, Iijima H, Barman S, Osawa H, Matsuno H, Nishimura J, Ohba Y, Nakamura S, Iida T, Yamamoto M, Umemoto E, Sano K, Takeda K. Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature. 2016;532(7597):117–21.

    Article  CAS  PubMed  Google Scholar 

  72. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS, Virgin HW. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141(7):1135–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Okamoto R, Watanabe M. Functional relevance of intestinal epithelial cells in inflammatory bowel disease. Nihon Rinsho Meneki Gakkai Kaishi (Jpn J Clin Immunol). 2016;39(6):522–7.

    Article  Google Scholar 

  74. de Souza HSP, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27.

    Article  PubMed  Google Scholar 

  75. Inohara N, Ogura Y, Nuñez G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol. 2002;5(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  76. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schäffeler E, Schlee M, Herrlinger KR, Stallmach A, Noack F, Fritz P, Schröder JM, Bevins CL, Fellermann K, Stange EF. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut. 2004;53(11):1658–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Numata, Y., Hirayama, D., Wagatsuma, K., Iida, T., Nakase, H. (2018). Apoptotic Cell Clearance in Gut Tissue: Role of Intestinal Regeneration. In: Turksen, K. (eds) Autophagy in Health and Disease. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-98146-8_6

Download citation

Publish with us

Policies and ethics