Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2226))

  • 1116 Accesses

Abstract

In this chapter an analysis is carried out which is analogous to, but more general than that in Chap. 4. The category of vector spaces in Chap. 4 is replaced by the category of bimodules over some algebra B; or, isomorphically, the category of left modules over B ⊗ B op. Those endofunctors on it are considered which are induced, as in Example 2.5 4, by the B ⊗ B op-module tensor product with a fixed B ⊗ B op-bimodule A. The monad structures on this functor \(A \otimes _{B \otimes B^{\mathsf {op}}} -\) are related to the algebra homomorphisms B ⊗ B op → A.

The monoidal structure of the category of B-bimodules is explained in Example 3.2 5. The opmonoidal structures with respect to it on the endofunctor \(A \otimes _{B \otimes B^{\mathsf {op}}} -\), are related to the so-called B|B-coring structures on A. This results in a bijection between the bimonads with underlying functor \(A \otimes _{B \otimes B^{\mathsf {op}}} -\) on the category of B-bimodules; and the bialgebroids over the base algebra B. The bijection is shown to restrict to Hopf monads on one hand; and Hopf algebroids on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ardizzoni, A., Böhm, G., Menini, C.: A Schneider type theorem for Hopf algebroids. J. Algebra 318(1), 225–269 (2007). Corrigendum: J. Algebra 321(6), 1786–1796 (2009)

    Google Scholar 

  2. Bálint, I., Szlachányi, K.: Finitary Galois extensions over noncommutative bases. J. Algebra 296(2), 520–560 (2006)

    Article  MathSciNet  Google Scholar 

  3. Böhm, G.: Galois theory for Hopf algebroids. Ann. Univ. Ferrara Sez. VII (N.S.) 51, 233–262 (2005)

    Google Scholar 

  4. Böhm, G.: Hopf algebroids. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 6, pp. 173–236. Elsevier, New York (2009)

    Google Scholar 

  5. Böhm, G., Brzeziński, T.: Cleft extensions of Hopf algebroids. Appl. Categ. Struct. 14(5–6), 431–469 (2006). Corrigendum: Appl. Categ. Struct. 17(6), 613–620 (2009)

    Google Scholar 

  6. Böhm, G., Ştefan, D.: (Co)cyclic (co)homology of bialgebroids: an approach via (co)monads. Commun. Math. Phys. 282(1), 239–286 (2008)

    Google Scholar 

  7. Böhm, G., Szlachányi, K.: Hopf algebroids with bijective antipodes: axioms, integrals, and duals. J. Algebra 274(2), 708–750 (2004)

    Article  MathSciNet  Google Scholar 

  8. Böhm, G., Szlachányi, K.: Hopf algebroid symmetry of abstract Frobenius extensions of depth 2. Commun. Algebra 32(11), 4433–4464 (2004)

    Article  MathSciNet  Google Scholar 

  9. Brzeziński, T., Militaru, G.: Bialgebroids, ×A-bialgebras and duality. J. Algebra 251(1), 279–294 (2002)

    Article  MathSciNet  Google Scholar 

  10. Day, B., Street, R.: Monoidal bicategories and Hopf algebroids. Adv. Math. 129(1), 99–157 (1997)

    Article  MathSciNet  Google Scholar 

  11. Day, B., Street, R.: Quantum category, star autonomy and quantum groupoids. In: Janelidze, G., Pareigis, B., Tholen, W. (eds.) Galois Theory, Hopf Algebras, and Semiabelian Categories. Fields Institute Communications, vol. 43, pp. 187–225. American Mathematical Society, Providence (2004)

    Google Scholar 

  12. Kadison, L.: Galois theory for bialgebroids, depth two and normal Hopf subalgebras. Ann. Univ. Ferrara Sez. VII (NS) 51, 209–231 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Kadison, L., Szlachányi, K.: Bialgebroid actions on depth two extensions and duality. Adv. Math. 179(1), 75–121 (2003)

    Article  MathSciNet  Google Scholar 

  14. Krähmer, U., Rovi, A.: A Lie–Rinehart algebra with no antipode. Commun. Algebra 43(10), 4049–4053 (2015)

    Article  MathSciNet  Google Scholar 

  15. Lu, J.-H.: Hopf algebroids and quantum groupoids. Int. J. Math. 7(1), 47–70 (1996)

    Article  MathSciNet  Google Scholar 

  16. Schäppi, D.: The Formal Theory of Tannaka Duality. Astérisque Series, vol. 357. American Mathematical Society, Providence (2013)

    Google Scholar 

  17. Schauenburg, P.: Bialgebras over noncommutative rings, and a structure theorem for Hopf bimodules. Appl. Categ. Struct. 6(2), 193–222 (1998)

    Article  MathSciNet  Google Scholar 

  18. Schauenburg, P.: Duals and doubles of quantum groupoids. In: Andruskiewitsch, N., Ferrer Santos, W.R., Schneider, H.-J. (eds.) New Trends in Hopf Algebra Theory. Contemporary Mathematics, vol. 267, pp. 273–300. American Mathematical Society, Providence (2000)

    Chapter  Google Scholar 

  19. Schauenburg, P.: Morita base change in quantum groupoids. In: Vainerman, L. (ed.) Locally Compact Quantum Groups and Groupoids. IRMA Lectures in Mathematics and Theoretical Physics, vol. 2, pp. 79–103. De Gruyter, Berlin (2003)

    Google Scholar 

  20. Szlachányi, K.: Finite quantum groupoids and inclusions of finite type. In: Longo, R. (ed.) Mathematical Physics in Mathematics and Physics: Quantum and Operator Algebraic Aspects. Fields Institute Communications, vol. 30, pp. 393–407. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  21. Szlachányi, K.: The monoidal Eilenberg–Moore construction and bialgebroids. J. Pure Appl. Algebra 182(2–3), 287–315 (2003)

    Article  MathSciNet  Google Scholar 

  22. Szlachányi, K.: Galois actions by finite quantum groupoids. In: Vainerman, L. (ed.) Locally Compact Quantum Groups and Groupoids. IRMA Lectures in Mathematics and Theoretical Physics, vol. 2, pp. 105–126. De Gruyter, Berlin (2003)

    Google Scholar 

  23. Takeuchi, M.: Groups of algebras over \(A \otimes \overline A\). J. Math. Soc. Jpn. 29(3), 459–492 (1977)

    Google Scholar 

  24. Takeuchi, M.: \(\sqrt {\mathrm{Morita}}\) theory—formal ring laws and monoidal equivalences of categories of bimodules. J. Math. Soc. Jpn. 39(2), 301–336 (1987)

    Google Scholar 

  25. Xu, P.: Quantum groupoids. Commun. Math. Phys. 216(3), 539–581 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Böhm, G. (2018). (Hopf) Bialgebroids. In: Hopf Algebras and Their Generalizations from a Category Theoretical Point of View. Lecture Notes in Mathematics, vol 2226. Springer, Cham. https://doi.org/10.1007/978-3-319-98137-6_5

Download citation

Publish with us

Policies and ethics