Abstract
Signcryption is a public-key cryptographic primitive, originally introduced by Zheng (Crypto ’97), that allows parties to establish secure communication without the need of prior key agreement. Instead, a party registers its public key at a certificate authority (CA), and only needs to retrieve the public key of the intended partner from the CA before being able to protect the communication. Signcryption schemes provide both authenticity and confidentiality of sent messages and can offer a simpler interface to applications and better performance compared to generic compositions of signature and encryption schemes.
Although introduced two decades ago, the question which security notions of signcryption are adequate in which applications has still not reached a fully satisfactory answer. To resolve this question, we conduct a constructive analysis of this public-key primitive. Similar to previous constructive studies for other important primitives, this treatment allows to identify the natural goal that signcryption schemes should achieve and to formalize this goal in a composable framework. More specifically, we capture the goal of signcryption as a gracefully-degrading secure network, which is basically a network of independent parties that allows secure communication between any two parties. However, when a party is compromised, its respective security guarantees are lost, while all guarantees for the remaining users remain unaffected. We show which security notions for signcryption are sufficient to construct this kind of secure network from a certificate authority (or key registration resource) and insecure communication. Our study does not only unveil that it is the so-called insider-security notion that enables this construction, but also that a weaker version thereof would already be sufficient. This may be of interest in the context of practical signcryption schemes that do not achieve the stronger notions.
Last but not least, we observe that the graceful-degradation property is actually an essential feature of signcryption that stands out in comparison to alternative and more standard constructions that achieve secure communication from the same assumptions. This underlines the vital importance of the insider security notion for signcryption and strongly supports, in contrast to the initial belief, the recent trend to consider the insider security notion as the standard notion for signcryption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This concept can be seen as a variant of the following UC concept: in UC, a functionality is informed which party is corrupted and its behavior can depend on this corruption set (e.g., leaking inputs to parties that get corrupted to the simulator). The same is achieved using the concept of filters in constructive cryptography, where removing the filter uncovers potential information needed to simulate.
References
An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_6
An, J.H.: Authenticated encryption in the public-key setting: security notions and analyses. Cryptology ePrint Archive, Report 2001/079 (2001). http://eprint.iacr.org/2001/079
Badertscher, C., Banfi, F., Maurer, U.: A constructive perspective on signcryption security. Cryptology ePrint Archive, Report 2018/050 (2018). https://eprint.iacr.org/2018/050
Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptol. 20(2), 203–235 (2007)
Barbosa, M., Farshim, P.: Certificateless signcryption. In: Proceedings of the 2008 ACM Symposium on Information, Computer and Communications Security, pp. 369–372. ACM (2008)
Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41
Bjørstad, T.E., Dent, A.W.: Building better signcryption schemes with tag-KEMs. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 491–507. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_32
Boyen, X.: Multipurpose identity-based signcryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_23
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of the 42nd Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)
Çapar, Ç., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.: Signal-flow-based analysis of wireless security protocols. Inf. Comput. 226, 37–56 (2013)
Datta, P., Dutta, R., Mukhopadhyay, S.: Compact attribute-based encryption and signcryption for general circuits from multilinear maps. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 3–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6_1
Datta, P., Dutta, R., Mukhopadhyay, S.: Functional signcryption: notion, construction, and applications. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 268–288. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_15
Dent, A.W.: Hybrid signcryption schemes with insider security. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 253–266. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_22
Freire, E.S.V., Hesse, J., Hofheinz, D.: Universally composable non-interactive key exchange. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 1–20. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_1
Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_17
Gjøsteen, K., Kråkmo, L.: Universally composable signcryption. In: Lopez, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 346–353. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73408-6_26
Gérard, F., Merckx, K.: Post-quantum signcryption from lattice-based signatures. Cryptology ePrint Archive, Report 2018/056 (2018)
Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_2
Hofheinz, D., Matt, C., Maurer, U.: Idealizing identity-based encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 495–520. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_21
Libert, B., Quisquater, J.J.: A new identity based signcryption scheme from pairings. In: 2003 Proceedings of the Information Theory Workshop, pp. 155–158. IEEE (2003)
Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 187–200. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_14
Liu, J.K., Baek, J., Zhou, J.: Online/offline identity-based signcryption revisited. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 36–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6_3
Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive, Report 2002/098 (2002). https://eprint.iacr.org/2002/098
Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_8
Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_3
Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Theoretical Computer Science, pp. 1–21. Tsinghua University Press (2011)
Pandit, T., Pandey, S.K., Barua, R.: Attribute-based signcryption: signer privacy, strong unforgeability and IND-CCA2 security in adaptive-predicates attack. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 274–290. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12475-9_19
Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23
Selvi, S.S.D., Sree Vivek, S., Pandu Rangan, C.: Identity based public verifiable signcryption scheme. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 244–260. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16280-0_17
Selvi, S.S.D., Sree Vivek, S., Vinayagamurthy, D., Pandu Rangan, C.: ID based signcryption scheme in standard model. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec 2012. LNCS, vol. 7496, pp. 35–52. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33272-2_4
Steinfeld, R., Zheng, Y.: A signcryption scheme based on integer factorization. In: Goos, G., Hartmanis, J., van Leeuwen, J., Pieprzyk, J., Seberry, J., Okamoto, E. (eds.) ISW 2000. LNCS, vol. 1975, pp. 308–322. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44456-4_23
Tian, Y., Peng, C.: Universally composable secure group communication. Cryptology ePrint Archive, Report 2014/647 (2014). https://eprint.iacr.org/2014/647
Wang, Y., Manulis, M., Au, M.H., Susilo, W.: Relations among privacy notions for signcryption and key invisible “sign-then-encrypt”. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 187–202. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39059-3_13
Young, M., Dent, A.W., Zheng, Y.: Practical Signcryption. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-89411-7
Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(\ll \) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052234
Zheng, Y., Imai, H.: How to construct efficient signcryption schemes on elliptic curves. Inf. Process. Lett. 68(5), 227–233 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Badertscher, C., Banfi, F., Maurer, U. (2018). A Constructive Perspective on Signcryption Security. In: Catalano, D., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2018. Lecture Notes in Computer Science(), vol 11035. Springer, Cham. https://doi.org/10.1007/978-3-319-98113-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-98113-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98112-3
Online ISBN: 978-3-319-98113-0
eBook Packages: Computer ScienceComputer Science (R0)