Skip to main content

A Constructive Perspective on Signcryption Security

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2018)

Abstract

Signcryption is a public-key cryptographic primitive, originally introduced by Zheng (Crypto ’97), that allows parties to establish secure communication without the need of prior key agreement. Instead, a party registers its public key at a certificate authority (CA), and only needs to retrieve the public key of the intended partner from the CA before being able to protect the communication. Signcryption schemes provide both authenticity and confidentiality of sent messages and can offer a simpler interface to applications and better performance compared to generic compositions of signature and encryption schemes.

Although introduced two decades ago, the question which security notions of signcryption are adequate in which applications has still not reached a fully satisfactory answer. To resolve this question, we conduct a constructive analysis of this public-key primitive. Similar to previous constructive studies for other important primitives, this treatment allows to identify the natural goal that signcryption schemes should achieve and to formalize this goal in a composable framework. More specifically, we capture the goal of signcryption as a gracefully-degrading secure network, which is basically a network of independent parties that allows secure communication between any two parties. However, when a party is compromised, its respective security guarantees are lost, while all guarantees for the remaining users remain unaffected. We show which security notions for signcryption are sufficient to construct this kind of secure network from a certificate authority (or key registration resource) and insecure communication. Our study does not only unveil that it is the so-called insider-security notion that enables this construction, but also that a weaker version thereof would already be sufficient. This may be of interest in the context of practical signcryption schemes that do not achieve the stronger notions.

Last but not least, we observe that the graceful-degradation property is actually an essential feature of signcryption that stands out in comparison to alternative and more standard constructions that achieve secure communication from the same assumptions. This underlines the vital importance of the insider security notion for signcryption and strongly supports, in contrast to the initial belief, the recent trend to consider the insider security notion as the standard notion for signcryption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This concept can be seen as a variant of the following UC concept: in UC, a functionality is informed which party is corrupted and its behavior can depend on this corruption set (e.g., leaking inputs to parties that get corrupted to the simulator). The same is achieved using the concept of filters in constructive cryptography, where removing the filter uncovers potential information needed to simulate.

References

  1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_6

    Chapter  Google Scholar 

  2. An, J.H.: Authenticated encryption in the public-key setting: security notions and analyses. Cryptology ePrint Archive, Report 2001/079 (2001). http://eprint.iacr.org/2001/079

  3. Badertscher, C., Banfi, F., Maurer, U.: A constructive perspective on signcryption security. Cryptology ePrint Archive, Report 2018/050 (2018). https://eprint.iacr.org/2018/050

  4. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptol. 20(2), 203–235 (2007)

    Article  MathSciNet  Google Scholar 

  5. Barbosa, M., Farshim, P.: Certificateless signcryption. In: Proceedings of the 2008 ACM Symposium on Information, Computer and Communications Security, pp. 369–372. ACM (2008)

    Google Scholar 

  6. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41

    Chapter  Google Scholar 

  7. Bjørstad, T.E., Dent, A.W.: Building better signcryption schemes with tag-KEMs. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 491–507. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_32

    Chapter  Google Scholar 

  8. Boyen, X.: Multipurpose identity-based signcryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_23

    Chapter  Google Scholar 

  9. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of the 42nd Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)

    Google Scholar 

  10. Çapar, Ç., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.: Signal-flow-based analysis of wireless security protocols. Inf. Comput. 226, 37–56 (2013)

    Article  MathSciNet  Google Scholar 

  11. Datta, P., Dutta, R., Mukhopadhyay, S.: Compact attribute-based encryption and signcryption for general circuits from multilinear maps. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 3–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6_1

    Chapter  Google Scholar 

  12. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional signcryption: notion, construction, and applications. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 268–288. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_15

    Chapter  Google Scholar 

  13. Dent, A.W.: Hybrid signcryption schemes with insider security. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 253–266. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_22

    Chapter  MATH  Google Scholar 

  14. Freire, E.S.V., Hesse, J., Hofheinz, D.: Universally composable non-interactive key exchange. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 1–20. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_1

    Chapter  Google Scholar 

  15. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_17

    Chapter  MATH  Google Scholar 

  16. Gjøsteen, K., Kråkmo, L.: Universally composable signcryption. In: Lopez, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 346–353. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73408-6_26

    Chapter  Google Scholar 

  17. Gérard, F., Merckx, K.: Post-quantum signcryption from lattice-based signatures. Cryptology ePrint Archive, Report 2018/056 (2018)

    Google Scholar 

  18. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_2

    Chapter  Google Scholar 

  19. Hofheinz, D., Matt, C., Maurer, U.: Idealizing identity-based encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 495–520. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_21

    Chapter  Google Scholar 

  20. Libert, B., Quisquater, J.J.: A new identity based signcryption scheme from pairings. In: 2003 Proceedings of the Information Theory Workshop, pp. 155–158. IEEE (2003)

    Google Scholar 

  21. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 187–200. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_14

    Chapter  MATH  Google Scholar 

  22. Liu, J.K., Baek, J., Zhou, J.: Online/offline identity-based signcryption revisited. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 36–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6_3

    Chapter  Google Scholar 

  23. Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive, Report 2002/098 (2002). https://eprint.iacr.org/2002/098

  24. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_8

    Chapter  Google Scholar 

  25. Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_3

    Chapter  MATH  Google Scholar 

  26. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Theoretical Computer Science, pp. 1–21. Tsinghua University Press (2011)

    Google Scholar 

  27. Pandit, T., Pandey, S.K., Barua, R.: Attribute-based signcryption: signer privacy, strong unforgeability and IND-CCA2 security in adaptive-predicates attack. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 274–290. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12475-9_19

    Chapter  MATH  Google Scholar 

  28. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

    Chapter  Google Scholar 

  29. Selvi, S.S.D., Sree Vivek, S., Pandu Rangan, C.: Identity based public verifiable signcryption scheme. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 244–260. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16280-0_17

    Chapter  Google Scholar 

  30. Selvi, S.S.D., Sree Vivek, S., Vinayagamurthy, D., Pandu Rangan, C.: ID based signcryption scheme in standard model. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec 2012. LNCS, vol. 7496, pp. 35–52. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33272-2_4

    Chapter  Google Scholar 

  31. Steinfeld, R., Zheng, Y.: A signcryption scheme based on integer factorization. In: Goos, G., Hartmanis, J., van Leeuwen, J., Pieprzyk, J., Seberry, J., Okamoto, E. (eds.) ISW 2000. LNCS, vol. 1975, pp. 308–322. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44456-4_23

    Chapter  Google Scholar 

  32. Tian, Y., Peng, C.: Universally composable secure group communication. Cryptology ePrint Archive, Report 2014/647 (2014). https://eprint.iacr.org/2014/647

  33. Wang, Y., Manulis, M., Au, M.H., Susilo, W.: Relations among privacy notions for signcryption and key invisible “sign-then-encrypt”. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 187–202. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39059-3_13

    Chapter  MATH  Google Scholar 

  34. Young, M., Dent, A.W., Zheng, Y.: Practical Signcryption. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-89411-7

    Book  MATH  Google Scholar 

  35. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(\ll \) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052234

    Chapter  Google Scholar 

  36. Zheng, Y., Imai, H.: How to construct efficient signcryption schemes on elliptic curves. Inf. Process. Lett. 68(5), 227–233 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Badertscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badertscher, C., Banfi, F., Maurer, U. (2018). A Constructive Perspective on Signcryption Security. In: Catalano, D., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2018. Lecture Notes in Computer Science(), vol 11035. Springer, Cham. https://doi.org/10.1007/978-3-319-98113-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98113-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98112-3

  • Online ISBN: 978-3-319-98113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics