Skip to main content

Zero-Knowledge Protocols for Search Problems

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11035))

Included in the following conference series:

Abstract

We consider natural ways to extend the notion of Zero-Knowledge (ZK) Proofs beyond decision problems. Specifically, we consider search problems, and define zero-knowledge proofs in this context as interactive protocols in which the prover can establish the correctness of a solution to a given instance without the verifier learning anything beyond the intended solution, even if it deviates from the protocol.

The goal of this work is to initiate a study of Search Zero-Knowledge (search-ZK), the class of search problems for which such systems exist. This class trivially contains search problems where the validity of a solution can be efficiently verified (using a single message proof containing only the solution). A slightly less obvious, but still straightforward, way to obtain zero-knowledge proofs for search problems is to let the prover send a solution and prove in zero-knowledge that the instance-solution pair is valid. However, there may be other ways to obtain such zero-knowledge proofs, and they may be more advantageous.

In fact, we prove that there are search problems for which the aforementioned approach fails, but still search zero-knowledge protocols exist. On the other hand, we show sufficient conditions for search problems under which some form of zero-knowledge can be obtained using the straightforward way.

The full version of this paper can be found at https://eprint.iacr.org/2018/437.pdf. Supported by the Israel Science Foundation (Grant No. 468/14), Binational Science Foundation (Grants No. 2016726, 2014276), and by the European Union Horizon 2020 Research and Innovation Program via ERC Project REACT (Grant 756482) and via Project PROMETHEUS (Grant 780701).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beimel, A., Carmi, P., Nissim, K., Weinreb, E.: Private approximation of search problems. In: Kleinberg, J.M. (ed.) Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006, pp. 119–128. ACM (2006). https://doi.acm.org/10.1145/1132516.1132533

  2. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_4. http://dl.acm.org/citation.cfm?id=646753.704888

    Chapter  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 1–10 (1988). https://doi.acm.org/10.1145/62212.62213

  4. Berger, B., Brakerski, Z.: Zero-knowledge protocols for search problems. Cryptology ePrint Archive, Report 2018/437 (2018). https://eprint.iacr.org/2018/437

  5. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 11–19 (1988). http://doi.acm.org/10.1145/62212.62214

  6. Damgård, I., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier vs dishonest verifier in public coin zero-knowledge proofs. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_26

    Chapter  Google Scholar 

  7. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Secure multiparty computation of approximations. ACM Trans. Algorithms 2(3), 435–472 (2006). https://doi.org/10.1145/1159892.1159900

    Article  MathSciNet  MATH  Google Scholar 

  8. Gat, E., Goldwasser, S.: Probabilistic search algorithms with unique answers and their cryptographic applications. Electron. Colloq. Comput. Complex. (ECCC) 18, 136 (2011). http://eccc.hpi-web.de/report/2011/136

    Google Scholar 

  9. Goldreich, O., Vadhan, S.: Comparing entropies in statistical zero knowledge with applications to the structure of SZK. In: Proceedings of the Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317), pp. 54–73 (1999). https://doi.org/10.1109/CCC.1999.766262

  10. Goldreich, O.: Computational Complexity - A Conceptual Perspective. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  11. Goldreich, O., Goldwasser, S., Ron, D.: On the possibilities and limitations of pseudodeterministic algorithms. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 127–138. ACM, New York (2013). https://doi.acm.org/10.1145/2422436.2422453

  12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  13. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991). https://doi.org/10.1145/116825.116852

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldreich, O., Sahai, A., Vadhan, S.P.: Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge. In: Vitter, J.S. (ed.) Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, 23–26 May 1998, pp. 399–408. ACM (1998). https://doi.acm.org/10.1145/276698.276852

  16. Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made non-interactive? Or on the relationship of SZK and NISZK. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_30. http://dl.acm.org/citation.cfm?id=646764.703982

    Chapter  Google Scholar 

  17. Goldwasser, S., Grossman, O.: Perfect bipartite matching in pseudo-deterministic RNC. Electron. Colloq. Comput. Complex. (ECCC) 22, 208 (2015). http://eccc.hpi-web.de/report/2015/208

    Google Scholar 

  18. Goldwasser, S., Grossman, O.: Bipartite perfect matching in pseudo-deterministic NC. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, Warsaw, Poland, 10–14 July 2017. LIPIcs, vol. 80, pp. 87:1–87:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.87

  19. Goldwasser, S., Grossman, O., Holden, D.: Pseudo-deterministic proofs. In: Karlin, A.R. (ed.) 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, Cambridge, MA, USA, 11–14 January 2018. LIPIcs, vol. 94, pp. 17:1–17:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.ITCS.2018.17

  20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/0218012

    Article  MathSciNet  MATH  Google Scholar 

  21. Grossman, O.: Finding primitive roots pseudo-deterministically. Electron. Colloq. Comput. Complex. (ECCC) 22, 207 (2015). http://eccc.hpi-web.de/report/2015/207

    Google Scholar 

  22. Halevi, S., Krauthgamer, R., Kushilevitz, E., Nissim, K.: Private approximation of NP-hard functions. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) Proceedings on 33rd Annual ACM Symposium on Theory of Computing, Heraklion, Crete, Greece, 6–8 July 2001, pp. 550–559. ACM (2001). https://doi.acm.org/10.1145/380752.380850

  23. Okamoto, T.: On relationships between statistical zero-knowledge proofs. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 649–658. ACM (1996). https://doi.acm.org/10.1145/237814.238016

  24. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J. ACM 50(2), 196–249 (2003). http://doi.acm.org/10.1145/636865.636868

    Article  MathSciNet  Google Scholar 

  25. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). http://doi.acm.org/10.1145/146585.146609

    Article  MathSciNet  Google Scholar 

  26. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)

    Google Scholar 

Download references

Acknowledgements

We thank Ofer Grossman and Oded Goldreich for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berger, B., Brakerski, Z. (2018). Zero-Knowledge Protocols for Search Problems. In: Catalano, D., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2018. Lecture Notes in Computer Science(), vol 11035. Springer, Cham. https://doi.org/10.1007/978-3-319-98113-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98113-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98112-3

  • Online ISBN: 978-3-319-98113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics