Skip to main content

Retinal Ganglion Cell Replacement: A Bridge to the Brain

  • Chapter
  • First Online:
Regenerative Medicine and Stem Cell Therapy for the Eye

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 556 Accesses

Abstract

An estimated 3% of the global population over 40 years of age currently has glaucoma. The early onset of retinal ganglion cells (RGC) loss (before significant changes in vision occur) and the lack of regenerative capacity in the mammalian retina (Samuel et al., J Neurosci 31(44):16033–16044, 2011) limit potential therapeutic options. For a long time the replacement of RGCs as a therapy for glaucoma and other optic neuropathies was not considered as a potential strategy because of the perceived inability of mature RGCs to regrow full-length axons and reach relevant targets in the brain. However, recent optic nerve (Bei et al., Cell 164(1–2):219–232, 2016; Lim et al., Nat Neurosci 19(8):1073–1084, 2016) and spinal cord regeneration studies, together with developments in pluripotent and retinal cell biology, as well as pilot RGC transplantation experiments (Hertz et al., Cell Transplant 23(7):855–872, 2013; Venugopalan et al., Nat Commun 7:10472, 2016), demonstrate that it may be possible to restore the RGC population in the retina and regrow the optic nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samuel, M. A., Zhang, Y., Meister, M., & Sanes, J. R. (2011). Age-related alterations in neurons of the mouse retina. The Journal of Neuroscience, 31(44), 16033–16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bei, F., Lee, H. H. C., Liu, X., Gunner, G., Jin, H., Ma, L., et al. (2016). Restoration of visual function by enhancing conduction in regenerated axons. Cell, 164(1–2), 219–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lim, J.-H. A., Stafford, B. K., Nguyen, P. L., Lien, B. V., Wang, C., Zukor, K., et al. (2016). Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nature Neuroscience, 19(8), 1073–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hertz, J., Qu, B., Hu, Y., Patel, R. D., Valenzuele, D. A., & Goldberg, J. (2013). Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation. Cell Transplantation, 23(7), 855–872.

    Article  PubMed  Google Scholar 

  5. Venugopalan, P., Wang, Y., Nguyen, T., Huang, A., Muller, K. J., & Goldberg, J. L. (2016). Transplanted neurons integrate into adult retinas and respond to light. Nature Communications, 7, 10472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, P. D., Sun, F., Park, K. K., Cai, B., Wang, C., Kuwako, K., et al. (2009). SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron, 64(5), 617–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Lima, S., Koriyama, Y., Kurimoto, T., Oliveira, J. T., Yin, Y., Li, Y., et al. (2012). Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 9149–9154.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brown, N. L., Patel, S., Brzezinski, J., & Glaser, T. (2001). Math5 is required for retinal ganglion cell and optic nerve formation. Development, 128(13), 2497–2508.

    CAS  PubMed  Google Scholar 

  9. Wang, S. W., Kim, B. S., Ding, K., Wang, H., Sun, D., Johnson, R. L., et al. (2001). Requirement for math5 in the development of retinal ganglion cells. Genes & Development, 15(1), 24–29.

    Article  CAS  Google Scholar 

  10. Liu, W., Khare, S. L., Liang, X., Peters, M. A., Liu, X., Cepko, C. L., et al. (2000). All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development, 127(15), 3237–3247.

    CAS  PubMed  Google Scholar 

  11. Zhang, Q., Zagozewski, J., Cheng, S., Dixit, R., Zhang, S., de Melo, J., et al. (2017). Regulation of Brn3bby DLX1 and DLX2 is required for retinal ganglion cell differentiation in the vertebrate retina. Development, 144(9), 1698–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jorstad, N. L., Wilken, M. S., Grimes, W. N., Wohl, S. G., VandenBosch, L. S., Yoshimatsu, T., et al. (2017). Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature, 548(7665), 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., et al. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472(7341), 51–56.

    Article  CAS  PubMed  Google Scholar 

  14. Zhong, X., Gutierrez, C., Xue, T., Hampton, C., Vergara, M. N., Cao, L.-H., et al. (2014). Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communications, 5, 4047.

    Article  CAS  PubMed  Google Scholar 

  15. Sluch, V. M., Davis, C.-H. O., Ranganathan, V., Kerr, J. M., Krick, K., Martin, R., et al. (2015). Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Scientific Reports, 5, 16595.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Langer KB, Ohlemacher SK, Phillips MJ, et al. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells (2018) Stem Cell Reports. 10(4):1282–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16(1), 37–68.

    Article  CAS  PubMed  Google Scholar 

  18. Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. The Journal of Physiology, 187(3), 517–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rousso, D. L., Qiao, M., Kagan, R. D., Yamagata, M., Palmiter, R. D., & Sanes, J. R. (2016). Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. Cell Reports, 15(9), 1930–1944.

    Article  CAS  PubMed  Google Scholar 

  20. Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., et al. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161(5), 1202–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mansour-Robaey, S., Clarke, D. B., Wang, Y. C., Bray, G. M., & Aguayo, A. J. (1994). Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 91(5), 1632–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leibinger, M., Andreadaki, A., Gobrecht, P., Levin, E., Diekmann, H., & Fischer, D. (2016). Boosting central nervous system axon regeneration by circumventing limitations of natural cytokine signaling. Molecular Therapy, 24(10), 1712–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mehta, S. T., Luo, X., Park, K. K., Bixby, J. L., & Lemmon, V. P. (2016). Hyperactivated Stat3 boosts axon regeneration in the CNS. Experimental Neurology, 280, 115–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, K. K., Liu, K., Hu, Y., Smith, P. D., Wang, C., Cai, B., et al. (2008). Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science, 322(5903), 963–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moore, D. L., Blackmore, M. G., Hu, Y., Kaestner, K. H., Bixby, J. L., Lemmon, V. P., et al. (2009). KLF family members regulate intrinsic axon regeneration ability. Science, 326(5950), 298–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Puttagunta, R., Tedeschi, A., Sória, M. G., Hervera, A., Lindner, R., Rathore, K. I., et al. (2014). PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nature Communications, 5, 3527.

    Article  PubMed  CAS  Google Scholar 

  27. Belin, S., Nawabi, H., Wang, C., Tang, S., Latremoliere, A., Warren, P., et al. (2015). Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron, 86(4), 1000–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ou, Y., Jo, R. E., Ullian, E. M., Wong, R. O. L., & Santina, D. L. (2016). Selective vulnerability of specific retinal ganglion cell types and synapses after transient ocular hypertension. The Journal of Neuroscience, 36(35), 9240–9252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santina Della, L., Inman, D. M., Lupien, C. B., Horner, P. J., & Wong, R. O. L. (2013). Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. The Journal of Neuroscience, 33(44), 17444–17457.

    Article  CAS  Google Scholar 

  30. Feng, L., Zhao, Y., Yoshida, M., Chen, H., Yang, J. F., Kim, T. S., et al. (2013). Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Investigative Ophthalmology & Visual Science, 54(2), 1106–1117.

    Article  Google Scholar 

  31. Duan, X., Qiao, M., Bei, F., Kim, I.-J., He, Z., & Sanes, J. R. (2015). Subtype-specific regeneration of retinal ganglion cells following axotomy: Effects of osteopontin and mTOR signaling. Neuron, 85(6), 1244–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El-Danaf, R. N., & Huberman, A. D. (2015). Characteristic patterns of dendritic remodeling in early-stage glaucoma: Evidence from genetically identified retinal ganglion cell types. The Journal of Neuroscience, 35(6), 2329–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Della Santina, L., & Ou, Y. (2017). Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Experimental Eye Research, 158, 43–50.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, H., Zhao, Y., Liu, M., Feng, L., Puyang, Z., Yi, J., et al. (2015). Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Investigative Ophthalmology & Visual Science, 56(3), 1971–1984.

    Article  Google Scholar 

  35. Pang, J.-J., Frankfort, B. J., Gross, R. L., & Wu, S. M. (2015). Elevated intraocular pressure decreases response sensitivity of inner retinal neurons in experimental glaucoma mice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2593–2598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Puyang, Z., Gong, H.-Q., He, S.-G., Troy, J. B., Liu, X., & Liang, P.-J. (2017). Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury. Experimental Eye Research, 162, 97–103.

    Article  PubMed  CAS  Google Scholar 

  37. Sappington, R. M., Sidorova, T., Long, D. J., & Calkins, D. J. (2009). TRPV1: Contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Investigative Ophthalmology & Visual Science, 50(2), 717–728.

    Article  Google Scholar 

  38. He, Z., & Jin, Y. (2016). Intrinsic control of axon regeneration. Neuron, 90(3), 437–451.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, B., Atwal, J., Ho, C., Case, L., He, X.-L., Garcia, K. C., et al. (2005). Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102(4), 1205–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, J. K., Geoffroy, C. G., Chan, A. F., Tolentino, K. E., Crawford, M. J., Leal, M. A., et al. (2010). Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron, 66(5), 663–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cafferty, W. B. J., Duffy, P., Huebner, E., & Strittmatter, S. M. (2010). MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. Journal of Neuroscience, 30(20), 6825–6837.

    Article  CAS  PubMed  Google Scholar 

  42. Kaplan, A., Ong Tone, S., & Fournier, A. E. (2015). Extrinsic and intrinsic regulation of axon regeneration at a crossroads. Frontiers in Molecular Neuroscience, 8, 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. GrandPré, T., Li, S., & Strittmatter, S. M. (2002). Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature, 417(6888), 547–551.

    Article  PubMed  CAS  Google Scholar 

  44. Yiu, G., & He, Z. (2006). Glial inhibition of CNS axon regeneration. Nature Reviews of Neuroscience, 7(8), 617–627.

    Article  CAS  PubMed  Google Scholar 

  45. Tsai, S.-Y., Papadopoulos, C. M., Schwab, M. E., & Kartje, G. L. (2011). Delayed anti-nogo-a therapy improves function after chronic stroke in adult rats. Stroke, 42(1), 186–190.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, X., Duffy, P., McGee, A. W., Hasan, O., Gould, G., Tu, N., et al. (2011). Recovery from chronic spinal cord contusion after Nogo receptor intervention. Annals of Neurology, 70(5), 805–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shen, Y., Tenney, A. P., Busch, S. A., Horn, K. P., Cuascut, F. X., Liu, K., et al. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science, 326(5952), 592–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fisher, D., Xing, B., Dill, J., Li, H., Hoang, H. H., Zhao, Z., et al. (2011). Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. The Journal of Neuroscience, 31(40), 14051–14066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stiles, T. L., Dickendesher, T. L., Gaultier, A., Fernandez-Castaneda, A., Mantuano, E., Giger, R. J., et al. (2013). LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin. Journal of Cell Science, 126(Pt 1), 209–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bradbury, E. J., & Carter, L. M. (2011). Manipulating the glial scar: Chondroitinase ABC as a therapy for spinal cord injury. Brain Research Bulletin, 84(4–5), 306–316.

    Article  CAS  PubMed  Google Scholar 

  51. Alilain, W. J., Horn, K. P., Hu, H., Dick, T. E., & Silver, J. (2011). Functional regeneration of respiratory pathways after spinal cord injury. Nature, 475(7355), 196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. García-Alías, G., & Fawcett, J. W. (2012). Training and anti-CSPG combination therapy for spinal cord injury. Experimental Neurology, 235(1), 26–32.

    Article  PubMed  CAS  Google Scholar 

  53. García-Alías, G., Petrosyan, H. A., Schnell, L., Horner, P. J., Bowers, W. J., Mendell, L. M., et al. (2011). Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. The Journal of Neuroscience, 31(49), 17788–17799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lang, B. T., Cregg, J. M., Depaul, M. A., Tran, A. P., Xu, K., Dyck, S. M., et al. (2015). Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature, 518(7539), 404–408.

    Article  CAS  PubMed  Google Scholar 

  55. Goldberg, J. L., Espinosa, J. S., Xu, Y., Davidson, N., Kovacs, G. T. A., & Barres, B. A. (2002). Retinal ganglion cells do not extend axons by default: Promotion by neurotrophic signaling and electrical activity. Neuron, 33(5), 689–702.

    Article  CAS  PubMed  Google Scholar 

  56. Veldman, M. B., Bemben, M. A., Thompson, R. C., & Goldman, D. (2007). Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Developmental Biology, 312(2), 596–612.

    Article  CAS  PubMed  Google Scholar 

  57. Park, K. K., Hu, Y., Muhling, J., Pollett, M. A., Dallimore, E. J., Turnley, A. M., et al. (2009). Cytokine-induced SOCS expression is inhibited by cAMP analogue: Impact on regeneration in injured retina. Molecular and Cellular Neurosciences, 41(3), 313–324.

    Article  CAS  PubMed  Google Scholar 

  58. Qin, Q., Baudry, M., Liao, G., Noniyev, A., Galeano, J., & Bi, X. (2009). A novel function for p53: Regulation of growth cone motility through interaction with Rho kinase. The Journal of Neuroscience, 29(16), 5183–5192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lingor, P., Tönges, L., Pieper, N., Bermel, C., Barski, E., Planchamp, V., et al. (2008). ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain, 131(Pt 1), 250–263.

    Article  PubMed  Google Scholar 

  60. Pernet, V., & Di Polo, A. (2006). Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain, 129(Pt 4), 1014–1026.

    Article  PubMed  Google Scholar 

  61. Huberman, A. D., Wei, W., Elstrott, J., Stafford, B. K., Feller, M. B., & Barres, B. A. (2009). Genetic identification of an on-off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron, 62(3), 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Osterhout, J. A., El-Danaf, R. N., Nguyen, P. L., & Huberman, A. D. (2014). Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Reports, 8(4), 1006–1017.

    Article  CAS  PubMed  Google Scholar 

  63. Ringstedt, T., Braisted, J. E., Brose, K., Kidd, T., Goodman, C., Tessier-Lavigne, M., et al. (2000). Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the diencephalon. The Journal of Neuroscience, 20(13), 4983–4991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Osterhout, J. A., Josten, N., Yamada, J., Pan, F., Wu, S.-W., Nguyen, P. L., et al. (2011). Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron, 71(4), 632–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Franco, A., Knafo, S., Banon-Rodriguez, I., Merino-Serrais, P., Fernaud-Espinosa, I., Nieto, M., et al. (2012). WIP is a negative regulator of neuronal maturation and synaptic activity. Cerebral Cortex, 22(5), 1191–1202.

    Article  CAS  PubMed  Google Scholar 

  66. Vidal-Sanz, M., Avilés-Trigueros, M., Whiteley, S. J. O., Sauvé, Y., & Lund, R. D. (2002). Reinnervation of the pretectum in adult rats by regenerated retinal ganglion cell axons: Anatomical and functional studies. Progress in Brain Research, 137, 443–452.

    Article  PubMed  Google Scholar 

  67. Wizenmann, A., Thanos, S., von Boxberg, Y., & Bonhoeffer, F. (1993). Differential reaction of crossing and non-crossing rat retinal axons on cell membrane preparations from the chiasm midline: An in vitro study. Development, 117(2), 725–735.

    CAS  PubMed  Google Scholar 

  68. Wang, Q., Marcucci, F., Cerullo, I., & Mason, C. (2016). Ipsilateral and contralateral retinal ganglion cells express distinct genes during decussation at the optic chiasm. eNeuro, 3(6), ENEURO.0169-16.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Luo, X., Salgueiro, Y., Beckerman, S. R., Lemmon, V. P., Tsoulfas, P., & Park, K. K. (2013). Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Experimental Neurology, 247, 653–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bray, E. R., Noga, M., Thakor, K., Wang, Y., Lemmon, V. P., Park, K. K., et al. (2017). 3D Visualization of individual regenerating retinal ganglion cell axons reveals surprisingly complex growth paths. eNeuro, 4(4), ENEURO.0093-17.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pernet, V., Joly, S., Jordi, N., Dalkara, D., Guzik-Kornacka, A., Flannery, J. G., et al. (2013). Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death & Disease, 4(7), e734–e734.

    Article  CAS  Google Scholar 

  72. Rodger, J., Drummond, E. S., Hellström, M., Robertson, D., & Harvey, A. R. (2012). Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells. PLoS One, 7(2), e31061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Teotia, P., Van Hook, M.J., Ahmad I. A. (2017). Co-culture Model for Determining the Target Specificity of the de novo Generated Retinal Ganglion Cells. Bio-protocol, 7(7), e2212. http://doi.org/10.21769/BioProtoc.2212.

  74. Hertz, J., Qu, B., Hu, Y., Patel, R. D., Valenzuela, D. A., & Goldberg, J. L. (2014). Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation. Cell Transplantation, 23(7), 855–872.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baranov, P., Oswald, J. (2018). Retinal Ganglion Cell Replacement: A Bridge to the Brain. In: Ballios, B., Young, M. (eds) Regenerative Medicine and Stem Cell Therapy for the Eye. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-98080-5_8

Download citation

Publish with us

Policies and ethics