Skip to main content

Photoreceptor Cell Replacement Therapy from Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine and Stem Cell Therapy for the Eye

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 622 Accesses

Abstract

Macular degenerations, retinitis pigmentosa, and retinal dystrophies affect millions of people worldwide. In most cases, loss of visual function results from the death of photoreceptors, the specialized cells involved in photo-transduction. An innovative and efficient therapeutic solution for retinal degenerative diseases may be photoreceptor cell transplantation. Yet, the human eye contains about one hundred million photoreceptors, and cell replacement therapy would require at least a fraction of this, raising the issue of where to find an abundant source of healthy human photoreceptors to treat patients. Human pluripotent stem cells can be expanded quasi-indefinitely and differentiate into all cell types of the human body. Methods to direct the differentiation of human pluripotent stem cells into retinal cells and photoreceptors have been developed based on developmental biology principles. Here, we review the history and evolution of these methods, looking at two-dimensional and three-dimensional cell culture systems. We also analyze the current outcomes of photoreceptor cell transplantation therapy and explore the upcoming challenges for its clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belecky-Adams, T., Cook, B., & Adler, R. (1996). Correlations between terminal mitosis and differentiated fate of retinal precursor cells in vivo and in vitro: Analysis with the “window-labeling” technique. Developmental Biology, 178, 304–315.

    Article  CAS  PubMed  Google Scholar 

  2. Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M., & Ezzeddine, D. (1996). Cell fate determination in the vertebrate retina. Proceedings of the National Academy of Sciences of the U.S.A., 93, 589–595.

    Article  CAS  Google Scholar 

  3. Reh, T. A., & Kljavin, I. J. (1989). Age of differentiation determines rat retinal germinal cell phenotype: Induction of differentiation by dissociation. Journal of Neuroscience, 9, 4179–4189.

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe, T., & Raff, M. C. (1990). Rod photoreceptor development in vitro: Intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron, 4, 461–467.

    Article  CAS  PubMed  Google Scholar 

  5. Carl, M., Loosli, F., & Wittbrodt, J. (2002). Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development, 129, 4057–4063.

    CAS  PubMed  Google Scholar 

  6. Mathers, P. H., Grinberg, A., Mahon, K. A., & Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature, 387, 603–607.

    Article  CAS  PubMed  Google Scholar 

  7. Taranova, O. V., Magness, S. T., Fagan, B. M., Wu, Y., Surzenko, N., Hutton, S. R., et al. (2006). SOX2 is a dosedependent regulator of retinal neural progenitor competence. Genes & Development, 20, 1187–1202.

    Article  CAS  Google Scholar 

  8. Chow, R. L., Altmann, C. R., Lang, R. A., & Hemmati-Brivanlou, A. (1999). Pax6 induces ectopic eyes in a vertebrate. Development, 126, 4213–4222.

    CAS  PubMed  Google Scholar 

  9. Marquardt, T., Ashery-Padan, R., Andrejewski, N., Scardigli, R., Guillemot, F., & Gruss, P. (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell, 105, 43–55.

    Article  CAS  PubMed  Google Scholar 

  10. Porter, F. D., Drago, J., Xu, Y., Cheema, S. S., Wassif, C., Huang, S. P., et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development, 124, 2935–2944.

    CAS  PubMed  Google Scholar 

  11. Lagutin, O. V., Zhu, C. C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., et al. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes & Development, 17, 368–379.

    Article  CAS  Google Scholar 

  12. Loosli, F., Winkler, S., & Wittbrodt, J. (1999). Six3 overexpression initiates the formation of ectopic retina. Genes & Development, 13, 649–654.

    Article  CAS  Google Scholar 

  13. Bernier, G., Panitz, F., Zhou, X., Hollemann, T., Gruss, P., & Pieler, T. (2000). Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos. Mechanisms of Development, 93, 59–69.

    Article  CAS  PubMed  Google Scholar 

  14. Swaroop, A., Kim, D., & Forrest, D. (2010). Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nature Reviews. Neuroscience, 11, 563–576.

    Article  CAS  PubMed  Google Scholar 

  15. Nishida, A., Furukawa, A., Koike, C., Tano, Y., Aizawa, S., Matsuo, I., et al. (2003). Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nature Neuroscience, 6, 1255–1263.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, S., Wang, Q. L., Nie, Z., Sun, H., Lennon, G., Copeland, N. G., et al. (1997). Crx, a novel Otx-like pairedhomeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron, 19, 1017–1030.

    Article  CAS  PubMed  Google Scholar 

  17. Freund, C. L., Gregory-Evans, C. Y., Furukawa, T., Papaioannou, M., Looser, J., Ploder, L., et al. (1997). Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell, 91, 543–553.

    Article  CAS  PubMed  Google Scholar 

  18. Freund, C. L., Wang, Q. L., Chen, S., Muskat, B. L., Wiles, C. D., Sheffield, V. C., et al. (1998). De novo mutations in CRX homeobox gene associated with Leber congenital amaurosis. Nature Genetics, 18, 311–312.

    Article  CAS  PubMed  Google Scholar 

  19. Furukawa, T., Morrow, E. M., & Cepko, C. L. (1997). Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell, 91, 531–541.

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa, T., Morrow, E. M., Li, T., Davis, F. C., & Cepko, C. L. (1999). Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nature Genetics, 23, 466–470.

    Article  CAS  PubMed  Google Scholar 

  21. Swaroop, A., Wang, Q. L., Wu, W., Cook, J., Coats, C., Xu, S., et al. (1999). Leber congenital amaurosis caused by a homozygous mutation (R90W) in the homeodomain of the retinal transcription factor CRX: Direct evidence for the involvement of CRX in the development of photoreceptor function. Human Molecular Genetics, 8, 299–305.

    Article  CAS  PubMed  Google Scholar 

  22. Aboshiha, J., Dubis, A. M., Carroll, J., Hardcastle, A. J., & Michaelides, M. (2016). The cone dysfunction syndromes. British Journal of Ophthalmology, 100(1):115–121.

    Google Scholar 

  23. Michaelides, M., Hardcastle, A. J., Hunt, D. M., & Moore, A. T. (2006). Progressive cone and cone-rod dystrophies: Phenotypes and underlying molecular genetic basis. Survey of Ophthalmology, 51, 232–258.

    Article  PubMed  Google Scholar 

  24. Yanagi, Y., Takezawa, S., & Kato, S. (2002). Distinct functions of photoreceptor cell-specific nuclear receptor, thyroid hormone receptor beta2 and CRX in one photoreceptor development. Investigative Ophthalmology & Visual Science, 43, 3489–3494.

    Google Scholar 

  25. Ng, L., Hurley, J. B., Dierks, B., Srinivas, M., Salto, C., Vennstrom, B., et al. (2001). A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nature Genetics, 27, 94–98.

    Article  CAS  PubMed  Google Scholar 

  26. Jadhav, A. P., Mason, H. A., & Cepko, C. L. (2006). Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development, 133, 913–923.

    Article  CAS  PubMed  Google Scholar 

  27. Mears, A. J., Kondo, M., Swain, K. S., Takada, Y., Bush, R. A., Saunders, T. L., et al. (2001). Nrl is required for rod photoreceptor development. Nature Genetics, 29, 447–452.

    Article  CAS  PubMed  Google Scholar 

  28. Yaron, O., Farhy, C., Marquardt, T., Applebury, M., & Ashery-Padan, R. (2006). Notch1 functions to suppress cone photoreceptor fate specification in the developing mouse retina. Development, 133, 1367–1378.

    Article  CAS  PubMed  Google Scholar 

  29. Jia, L., Oh, E. C., Ng, L., Srinivas, M., Brooks, M., Swaroop, A., et al. (2009). Retinoid-related orphan nuclear receptor ROR beta is an early-acting factor in rod photoreceptor development. Proceedings of the National Academy of Sciences of the U.S.A., 106, 17534–17539.

    Article  CAS  Google Scholar 

  30. Meindl, A., Dry, K., Herrmann, K., Manson, F., Ciccodicola, A., Edgar, A., et al. (1996). A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nature Genetics, 13, 35–42.

    Article  CAS  PubMed  Google Scholar 

  31. Rachel, R. A., Li, T., & Swaroop, A. (2012). Photoreceptor sensory cilia and ciliopathies: Focus on CEP290, RPGR and their interacting proteins. Cilia, 1, 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narayanan, K., & Wadhwa, S. (1998). Photoreceptor morphogenesis in the human retina: A scanning electron microscopic study. Anatomical Record, 252, 133–139.

    Article  CAS  PubMed  Google Scholar 

  33. Solovei, I., Kreysing, M., Lanctot, C., Kosem, S., Peichl, L., Cremer, T., et al. (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell, 137, 356–368.

    Article  CAS  PubMed  Google Scholar 

  34. Adams, N. A., Awadein, A., & Toma, H. S. (2007). The retinal ciliopathies. Ophthalmic Genetics, 28, 113–125.

    Article  CAS  PubMed  Google Scholar 

  35. Clarke, G., Goldberg, A. F., Vidgen, D., Collins, L., Ploder, L., Schwarz, L., et al. (2000). Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nature Genetics, 25, 67–73.

    Article  CAS  PubMed  Google Scholar 

  36. Malm, E., Ponjavic, V., Moller, C., Kimberling, W. J., Stone, E. S., & Andreasson, S. (2011). Alteration of rod and cone function in children with Usher syndrome. European Journal of Ophthalmology, 21, 30–38.

    Article  PubMed  Google Scholar 

  37. Papal, S., Cortese, M., Legendre, K., Sorusch, N., Dragavon, J., Sahly, I., et al. (2013). The giant spectrin beta V couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route. Human Molecular Genetics, 22, 3773–3788.

    Article  CAS  PubMed  Google Scholar 

  38. Ait-Ali, N., Fridlich, R., Millet-Puel, G., Clerin, E., Delalande, F., Jaillard, C., et al. (2015). Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell, 161, 817–832.

    Article  CAS  PubMed  Google Scholar 

  39. Punzo, C., Kornacker, K., & Cepko, C. L. (2009). Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nature Neuroscience, 12, 44–52.

    Article  CAS  PubMed  Google Scholar 

  40. Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography. Journal of Comparative Neurology, 292, 497–523.

    Article  CAS  PubMed  Google Scholar 

  41. Franco, E. C., Finlay, B. L., Silveira, L. C., Yamada, E. S., & Crowley, J. C. (2000). Conservation of absolute foveal area in New World monkeys. A constraint on eye size and conformation. Brain, Behavior and Evolution, 56, 276–286.

    Article  CAS  PubMed  Google Scholar 

  42. da Silva, S., & Cepko, C. L. (2017). Fgf8 expression and degradation of retinoic acid are required for patterning a high-acuity area in the retina. Developmental Cell, 42, 68–81 e66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mohand-Said, S., Hicks, D., Dreyfus, H., & Sahel, J. A. (2000). Selective transplantation of rods delays cone loss in a retinitis pigmentosa model. Archives d’Ophtalmologie, 118, 807–811.

    Article  CAS  Google Scholar 

  44. Sancho-Pelluz, J., Arango-Gonzalez, B., Kustermann, S., Romero, F. J., van Veen, T., Zrenner, E., et al. (2008). Photoreceptor cell death mechanisms in inherited retinal degeneration. Molecular Neurobiology, 38, 253–269.

    Article  CAS  PubMed  Google Scholar 

  45. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    Article  CAS  PubMed  Google Scholar 

  46. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  49. Munoz Sanjuan, I., & Brivanlou, A. H. (2002). Neural induction, the default model and embryonic stem cells. Nature Reviews Neuroscience, 3, 271–280.

    Article  CAS  PubMed  Google Scholar 

  50. Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J., & van der Kooy, D. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron, 30, 65–78.

    Article  CAS  PubMed  Google Scholar 

  51. Wataya, T., Ando, S., Muguruma, K., Ikeda, H., Watanabe, K., Eiraku, M., et al. (2008). Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proceedings of the National Academy of Sciences of the U.S.A., 105, 11796–11801.

    Article  CAS  Google Scholar 

  52. Couly, G., & Le Douarin, N. M. (1988). The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development, 103, 101–113.

    PubMed  Google Scholar 

  53. Banin, E., Obolensky, A., Idelson, M., Hemo, I., Reinhardtz, E., Pikarsky, E., et al. (2006). Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells, 24, 246–257.

    Article  PubMed  Google Scholar 

  54. Liu, W., Lagutin, O., Swindell, E., Jamrich, M., & Oliver, G. (2010). Neuro retina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. Journal of Clinical Investigation, 120, 3568–3577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gestri, G., Carl, M., Appolloni, I., Wilson, S. W., Barsacchi, G., & Andreazzoli, M. (2005). Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development, 132, 2401–2413.

    Article  CAS  PubMed  Google Scholar 

  56. Pera, E. M., Wessely, O., Li, S. Y., & De Robertis, E. M. (2001). Neural and head induction by insulin-like growth factor signals. Development Cell, 1, 655–665.

    Article  CAS  Google Scholar 

  57. Rorick, A. M., Mei, W., Liette, N. L., Phiel, C., El-Hodiri, H. M., & Yang, J. (2007). PP2A:B56epsilon is required for eye induction and eye field separation. Developmental Biology, 302(2), 477–493.

    Article  CAS  PubMed  Google Scholar 

  58. Lamba, D. A., Karl, M. O., Ware, C. B., & Reh, T. A. (2006). Efficient generation of retinal progenitor cells from human embryonic stem cells. Proceedings of the National Academy of Sciences of the U.S.A., 103, 12769–12774.

    Article  CAS  Google Scholar 

  59. Lamba, D. A., Gust, J., & Reh, T. A. (2009). Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell, 4, 73–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Osakada, F., Ikeda, H., Mandai, M., Wataya, T., Watanabe, K., Yoshimura, N., et al. (2008). Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nature Biotechnology, 26, 215–224.

    Article  CAS  PubMed  Google Scholar 

  61. Idelson, M., Alper, R., Obolensky, A., Ben-Shushan, E., Hemo, I., Yachimovich-Cohen, N., et al. (2009). Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell, 5, 396–408.

    Article  CAS  PubMed  Google Scholar 

  62. Sasai, Y., Eiraku, M., & Suga, H. (2012). In vitro organogenesis in three dimensions: Self-organising stem cells. Development, 139, 4111–4121.

    Article  CAS  PubMed  Google Scholar 

  63. Freedman, B. S., Brooks, C. R., Lam, A. Q., Fu, H., Morizane, R., Agrawal, V., et al. (2015). Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communications, 6, 8715.

    Article  CAS  PubMed  Google Scholar 

  64. Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379.

    Article  CAS  PubMed  Google Scholar 

  65. Morizane, R., Lam, A. Q., Freedman, B. S., Kishi, S., Valerius, M. T., & Bonventre, J. V. (2015). Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 33, 1193–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., et al. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472, 51–56.

    Article  CAS  PubMed  Google Scholar 

  67. Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., et al. (2012). Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 10, 771–785.

    Article  CAS  PubMed  Google Scholar 

  68. Tucker, B. A., Mullins, R. F., Streb, L. M., Anfinson, K., Eyestone, M. E., Kaalberg, E., et al. (2013). Patient-specific iPSC derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. eLife, 2, e00824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mellough, C. B., Collin, J., Khazim, M., White, K., Sernagor, E., Steel, D. H., et al. (2015). IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells, 33, 2416–2430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gonzalez-Cordero, A., Kruczek, K., Naeem, A., Fernando, M., Kloc, M., Ribeiro, J., et al. (2017). Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Reports, 9, 820–837.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gonzalez-Cordero, A., West, E. L., Pearson, R. A., Duran, Y., Carvalho, L. S., Chu, C. J., et al. (2013). Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nature Biotechnology, 31, 741–747.

    Article  CAS  PubMed  Google Scholar 

  72. Bouwmeester, T., Kim, S., Sasai, Y., Lu, B., & De Robertis, E. M. (1996). Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature, 382, 595–601.

    Article  CAS  PubMed  Google Scholar 

  73. Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C., & Niehrs, C. (1997). Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature, 389, 517–519.

    Article  CAS  PubMed  Google Scholar 

  74. Piccolo, S., Agius, E., Leyns, L., Bhattacharyya, S., Grunz, H., Bouwmeester, T., et al. (1999). The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature, 397, 707–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Silva, A. C., Filipe, M., Kuerner, K. M., Steinbeisser, H., & Belo, J. A. (2003). Endogenous Cerberus activity is required for anterior head specification in Xenopus. Development, 130, 4943–4953.

    Article  CAS  PubMed  Google Scholar 

  76. Bell, E., Munoz-Sanjuan, I., Altmann, C. R., Vonica, A., & Brivanlou, A. H. (2003). Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development, 130, 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou, S., Flamier, A., Abdouh, M., Tetreault, N., Barabino, A., Wadhwa, S., et al. (2015). Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFbeta and Wnt signaling. Development, 142, 3294–3306.

    Article  CAS  PubMed  Google Scholar 

  78. Jin, Z. B., Okamoto, S., Osakada, F., Homma, K., Assawachananont, J., Hirami, Y., et al. (2011). Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One, 6, e17084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koenekoop, R. K., Sui, R., Sallum, J., van den Born, L. I., Ajlan, R., Khan, A., et al. (2014). Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: An open-label phase 1b trial. Lancet, 384, 1513–1520.

    Article  CAS  PubMed  Google Scholar 

  80. Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z. F., Tillman, A., et al. (2017). Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet, 390, 849–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takkar, B., Bansal, P., & Venkatesh, P. (2018). Leber’s congenital amaurosis and gene therapy. Indian Journal of Pediatrics, 85(3), 237–242.

    Article  PubMed  Google Scholar 

  82. Cheng, D. L., Greenberg, P. B., & Borton, D. A. (2017). Advances in retinal prosthetic research: A systematic review of engineering and clinical characteristics of current prosthetic initiatives. Current Eye Research, 42, 334–347.

    Article  PubMed  Google Scholar 

  83. Duncan, J. L., Richards, T. P., Arditi, A., da Cruz, L., Dagnelie, G., Dorn, J. D., et al. (2017). Improvements in vision related quality of life in blind patients implanted with the Argus II epiretinal prosthesis. Clinical and Experimental Optometry, 100, 144–150.

    Article  PubMed  Google Scholar 

  84. Parmeggiani, F., De Nadai, K., Piovan, A., Binotto, A., Zamengo, S., & Chizzolini, M. (2017). Optical coherence tomography imaging in the management of the Argus II retinal prosthesis system. European Journal of Ophthalmology, 27, e16–e21.

    Article  PubMed  Google Scholar 

  85. MacLaren, R. E., Pearson, R. A., MacNeil, A., Douglas, R. H., Salt, T. E., Akimoto, M., et al. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444, 203–207.

    Article  CAS  PubMed  Google Scholar 

  86. Pearson, R. A., Barber, A. C., Rizzi, M., Hippert, C., Xue, T., West, E. L., et al. (2012). Restoration of vision after transplantation of photoreceptors. Nature, 485, 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Barnea-Cramer, A. O., Wang, W., Lu, S. J., Singh, M. S., Luo, C., Huo, H., et al. (2016). Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Scientific Reports, 6, 29784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ortin-Martinez, A., Tsai, E. L., Nickerson, P. E., Bergeret, M., Lu, Y., Smiley, S., et al. (2017). A reinterpretation of cell transplantation: GFP transfer from donor to host photoreceptors. Stem Cells, 35, 932–939.

    Article  CAS  PubMed  Google Scholar 

  89. Pearson, R. A., Gonzalez-Cordero, A., West, E. L., Ribeiro, J. R., Aghaizu, N., Goh, D., et al. (2016). Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nature Communications, 7, 13029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu, J., Cifuentes, H., Reynolds, J., & Lamba, D. A. (2017). Immunosuppression via loss of IL2rgamma enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell, 20, 374–384 e375.

    Article  CAS  PubMed  Google Scholar 

  91. Assawachananont, J., Mandai, M., Okamoto, S., Yamada, C., Eiraku, M., Yonemura, S., et al. (2014). Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports, 2, 662–674.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mandai, M., Fujii, M., Hashiguchi, T., Sunagawa, G. A., Ito, S. I., Sun, J., et al. (2017). iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports, 8, 1112–1113.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shirai, H., Mandai, M., Matsushita, K., Kuwahara, A., Yonemura, S., Nakano, T., et al. (2016). Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proceedings of the National Academy of Sciences of the U.S.A., 113, E81–E90.

    Article  CAS  Google Scholar 

  94. Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z., et al. (2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet, 385, 509–516.

    Article  PubMed  Google Scholar 

  95. Song, W. K., Park, K. M., Kim, H. J., Lee, J. H., Choi, J., Chong, S. Y., et al. (2015). Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients. Stem Cell Reports, 4, 860–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., et al. (2017). Autologous induced stem-cell-derived retinal Cells for macular degeneration. New England Journal of Medicine, 376, 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  97. Xian, B., & Huang, B. (2015). The immune response of stem cells in subretinal transplantation. Stem Cell Research & Therapy, 6, 161.

    Article  CAS  Google Scholar 

  98. Neves, J., Zhu, J., Sousa-Victor, P., Konjikusic, M., Riley, R., Chew, S., et al. (2016). Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science, 353, aaf3646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wiley, L. A., Burnight, E. R., DeLuca, A. P., Anfinson, K. R., Cranston, C. M., Kaalberg, E. E., et al. (2016). cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Scientific Reports, 6, 30742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Borooah, S., Phillips, M. J., Bilican, B., Wright, A. F., Wilmut, I., Chandran, S., et al. (2013). Using human induced pluripotent stem cells to treat retinal disease. Progress in Retinal and Eye Research, 37, 163–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhao, L., Zabel, M. K., Wang, X., Ma, W., Shah, P., Fariss, R. N., et al. (2015). Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Molecular Medicine, 7, 1179–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Peng, B., Xiao, J., Wang, K., So, K. F., Tipoe, G. L., & Lin, B. (2014). Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. Journal of Neuroscience, 34, 8139–8150.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank the Foundation Fighting Blindness Canada for their financial support. Special thanks to Anthony Flamier, Andrea Barabino, and Shufeng Zhou for the images and to Roy Hanna for critical reading of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Bernier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernier, G. (2018). Photoreceptor Cell Replacement Therapy from Stem Cells. In: Ballios, B., Young, M. (eds) Regenerative Medicine and Stem Cell Therapy for the Eye. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-98080-5_1

Download citation

Publish with us

Policies and ethics