Advertisement

The Neurobiology of Behavioral Inhibition as a Developmental Mechanism

Chapter

Abstract

Humans are social creatures and have variable responses to novel social cues that range from cautious avoidance to eager approach. These trait differences in response to novelty have been defined as behavioral inhibition, a temperament that ranges from behaviorally inhibited on one extreme to behaviorally uninhibited at the other. For centuries temperament has been thought to reflect underlying differences in biology. With advances in neuroimaging methods, we now have a unique opportunity to identify the neurobiological basis of behavioral inhibition. In this chapter, we review the evidence that behavioral inhibition is associated with alterations in brain structure, function, and connectivity and present implications for understanding developmental trajectories. The emerging findings point to alterations in “bottom-up” mechanisms—heightened reactivity to novelty and failure to habituate—and “top-down” processes, failure of cognitive control and maladaptive anticipatory processing.

We propose that the bottom-up mechanisms, which are present very early in childhood, contribute to the earliest observations of behavioral inhibition in children and shape early developmental trajectories. In contrast, the top-down mechanisms emerge in early adolescence as the prefrontal cortex begins rapid maturation. Developmental trajectories of behaviorally inhibited children likely diverge in adolescence based on prefrontal cortex development. Adolescents with early maturation or robust prefrontal cortical function will move toward a trajectory of normative development, while adolescents with delayed or deficient prefrontal cortical development will maintain their trajectory of extreme inhibition and risk for anxiety. Future research must systematically study behaviorally inhibited children across development to document developmental differences in brain structure, function, and connectivity and to further clarify the role of neurobiological mechanisms in shaping developmental trajectories.

Keywords

Temperament Behavioral inhibition Anxiety fMRI Development Reactivity 

References

  1. Andersen, S. L., & Teicher, M. H. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 31(4), 183–191.CrossRefGoogle Scholar
  2. Arnsten, A. F. T., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1(1), 89–99.CrossRefGoogle Scholar
  3. Asselmann, E., Wittchen, H. U., Lieb, R., Höfler, M., & Beesdo-Baum, K. (2015). The role of behavioral inhibition and parenting for an unfavorable emotional trauma response and PTSD. Acta Psychiatrica Scandinavica, 131(4), 279–289.CrossRefGoogle Scholar
  4. Aupperle, R. L., Ravindran, L., Tankersley, D., Flagan, T., Stein, N. R., Simmons, A. N., … Paulus, M. P. (2011). Pregabalin influences insula and amygdala activation during anticipation of emotional images. Neuropsychopharmacology, 36(7), 1466–1477.CrossRefGoogle Scholar
  5. Avery, S. N. (2015). Slow to warm up: The role of habituation in social fear. Nashville, TN: Vanderbilt University.Google Scholar
  6. Avery, S. N., & Blackford, J. U. (2016). Slow to warm up: The role of habituation in social fear. Social Cognitive and Affective Neuroscience, 11(11), 1832–1840.CrossRefGoogle Scholar
  7. Bas-Hoogendam, J. M., Blackford, J. U., Brühl, A. B., Blair, K. S., van der Wee, N. J. A., & Westenberg, P. M. (2016). Neurobiological candidate endophenotypes of social anxiety disorder. Neuroscience and Biobehavioral Reviews, 71, 362–378.CrossRefGoogle Scholar
  8. Beesdo, K., Bittner, A., Pine, D. S., Stein, M. B., Hofler, M., Lieb, R., & Wittchen, H.-U. (2007). Incidence of social anxiety disorder and the consistent risk for secondary depression in the first three decades of life. Archives of General Psychiatry, 64(8), 903–912.CrossRefGoogle Scholar
  9. Biro, P. A., Post, J. R. (2008). Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2919–2922.CrossRefGoogle Scholar
  10. Biederman, J., Hirshfeld-Becker, D. R., Rosenbaum, J. F., Herot, C., Friedman, D., Snidman, N., … Faraone, S. V. (2001). Further evidence of association between behavioral inhibition and social anxiety in children. American Journal of Psychiatry, 158(10), 1673–1679.CrossRefGoogle Scholar
  11. Biederman, J., Rosenbaum, J. F., Bolducmurphy, E. A., Faraone, S. V., Chaloff, J., Hirshfeld, D. R., & Kagan, J. (1993). A 3-year follow-up of children with and without behavioral-inhibition. Journal of the American Academy of Child and Adolescent Psychiatry, 32(4), 814–821.CrossRefGoogle Scholar
  12. Blackford, J. U., Allen, A. H., Cowan, R. L., & Avery, S. N. (2013). Amygdala and hippocampus fail to habituate to faces in individuals with an inhibited temperament. Social Cognitive and Affective Neuroscience, 8(2), 143–150.CrossRefGoogle Scholar
  13. Blackford, J. U., Avery, S. N., Cowan, R. L., Shelton, R. C., & Zald, D. H. (2011). Sustained amygdala response to both novel and newly familiar faces characterizes inhibited temperament. Social Cognitive and Affective Neuroscience, 6(5), 621–629.CrossRefGoogle Scholar
  14. Blackford, J. U., Avery, S. N., Shelton, R. C., & Zald, D. H. (2009). Amygdala temporal dynamics: Temperamental differences in the timing of amygdala response to familiar and novel faces. BMC Neuroscience, 10, 145.CrossRefGoogle Scholar
  15. Blackford, J. U., Buckholtz, J. W., Avery, S. N., & Zald, D. H. (2010). A unique role for the amygdala in novelty detection. NeuroImage, 50(3), 1188–1193.CrossRefGoogle Scholar
  16. Blackford, J. U., Clauss, J. A., Avery, S. N., Cowan, R. L., Benningfield, M. M., & Vanderklok, R. M. (2014). Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition. Biological Psychology, 99, 15–25.CrossRefGoogle Scholar
  17. Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., … Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17(5), 875–887.CrossRefGoogle Scholar
  18. Brühl, A. B., Delsignore, A., Komossa, K., & Weidt, S. (2014). Neuroimaging in social anxiety disorder–a meta-analytic review resulting in a new neurofunctional model. Neuroscience & Biobehavioral Reviews, 47, 260–280.CrossRefGoogle Scholar
  19. Buckner, J. D., Schmidt, N. B., Lang, A. R., Small, J. W., Schlauch, R. C., & Lewinsohn, P. M. (2008). Specificity of social anxiety disorder as a risk factor for alcohol and cannabis dependence. Journal of Psychiatric Research, 42(3), 230–239.CrossRefGoogle Scholar
  20. Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990.CrossRefGoogle Scholar
  21. Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33(2), 301–311.CrossRefGoogle Scholar
  22. Bushnell, I. W. R. (1982). Discrimination of faces by young infants. Journal of Experimental Child Psychology, 33(2), 298–308.CrossRefGoogle Scholar
  23. Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54(1–3), 241–257.CrossRefGoogle Scholar
  24. Casey, B. J., Pattwell, S. S., Glatt, C. E., & Lee, F. S. (2013). Treating the developing brain: Implications from human imaging and mouse genetics. Annual Review of Medicine, 64, 427–439.CrossRefGoogle Scholar
  25. Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders. Longitudinal evidence from a birth cohort. Archives of General Psychiatry, 53(11), 1033–1039.CrossRefGoogle Scholar
  26. Chronis-Tuscano, A., Degnan, K. A., Pine, D. S., Pérez-Edgar, K., Henderson, H. A., Diaz, Y., … Fox, N. A. (2009). Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 48(9), 928–935.CrossRefGoogle Scholar
  27. Clauss, J. A., Avery, S. N., & Blackford, J. U. (2015). The nature of individual differences in inhibited temperament and risk for psychiatric disease: A review and meta-analysis. Progress in Neurobiology, 127-128, 23–45.CrossRefGoogle Scholar
  28. Clauss, J. A., Avery, S. N., VanDerKlok, R., Cowan, R. L., Benningfield, M. M., & Blackford, J. U. (2014). Neurocircuitry underlying risk and resilience to social anxiety disorder. Depression and Anxiety, 31, 822–833.CrossRefGoogle Scholar
  29. Clauss, J. A., Benningfield, M. M., Rao, U., & Blackford, J. U. (2016). Altered prefrontal cortex function marks heightened anxiety risk in children. Journal of the American Academy of Child & Adolescent Psychiatry, 55, 809–816.CrossRefGoogle Scholar
  30. Clauss, J. A., & Blackford, J. U. (2012). Behavioral inhibition and risk for developing social anxiety disorder: A meta-analytic study. Journal of the American Academy of Child and Adolescent Psychiatry, 51(10), 1066–1075.CrossRefGoogle Scholar
  31. Clauss, J. A., Cowan, R. L., & Blackford, J. U. (2011). Expectation and temperament moderate amygdala and dorsal anterior cingulate cortex responses to fear faces. Cognitive, Affective, & Behavioral Neuroscience, 11(1), 13–21.CrossRefGoogle Scholar
  32. Clauss, J. A., Seay, A. L., Vanderklok, R., Avery, S., Cao, A., Cowan, R. L., … Blackford, J. U. (2014). Structural and functional bases of inhibited temperament. Social Cognitive and Affective Neuroscience, 9(12), 2049–2058.CrossRefGoogle Scholar
  33. Cook, S. C., & Wellman, C. L. (2004). Chronic stress alters dendritic morphology in rat medial prefrontal cortex. Journal of Neurobiology, 60(2), 236–248.CrossRefGoogle Scholar
  34. Davidson, R. J., Lewis, D. A., Alloy, L. B., Amaral, D. G., Bush, G., Cohen, J. D., … Peterson, B. S. (2002). Neural and behavioral substrates of mood and mood regulation. Biological Psychiatry, 52(6), 478–502.CrossRefGoogle Scholar
  35. Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.CrossRefGoogle Scholar
  36. Debiec, J., & Sullivan, R. M. (2017). The neurobiology of safety and threat learning in infancy. Neurobiology of Learning and Memory, 143, 49–58.CrossRefGoogle Scholar
  37. Dilalla, L. F., Kagan, J., & Reznick, J. S. (1994). Genetic etiology of behavioral inhibition among 2-year-old children. Infant Behavior & Development, 17(4), 405–412.CrossRefGoogle Scholar
  38. Emde, R. N., Plomin, R., Robinson, J. A., Corley, R., DeFries, J., Fulker, D. W., … Zahn-Waxler, C. (1992). Temperament, emotion, and cognition at fourteen months: The MacArthur Longitudinal Twin Study. Child Development, 63(6), 1437–1455.CrossRefGoogle Scholar
  39. Ernst, M., Fudge, J. L. (2009). A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes. Neuroscience and Biobehavioral Reviews, 33(3), 367–382.CrossRefGoogle Scholar
  40. Essex, M. J., Klein, M. H., Slattery, M. J., Goldsmith, H. H. H., & Kalin, N. H. (2010). Early risk factors and developmental pathways to chronic high inhibition and social anxiety disorder in adolescence. American Journal of Psychiatry, 167(1), 40–46.CrossRefGoogle Scholar
  41. Frick, A., Howner, K., Fischer, H., Eskildsen, S. F., Kristiansson, M., & Furmark, T. (2013). Cortical thickness alterations in social anxiety disorder. Neuroscience Letters, 536, 52–55.CrossRefGoogle Scholar
  42. Fried, I., MacDonald, K. A., & Wilson, C. L. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron, 18(5), 753–765.CrossRefGoogle Scholar
  43. Fu, X., Taber-Thomas, B. C., & Pérez-Edgar, K. (2015). Frontolimbic functioning during threat-related attention: Relations to early behavioral inhibition and anxiety in children. Biological Psychology, 122, 98–109.CrossRefGoogle Scholar
  44. García Coll, C., Kagan, J., & Reznick, J. S. (1984). Behavioral inhibition in young children. Child Development, 55(3), 1005–1019.CrossRefGoogle Scholar
  45. Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., … Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. The Journal of Neuroscience, 33(10), 4584–4593.CrossRefGoogle Scholar
  46. Ghashghaei, H., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905–923.CrossRefGoogle Scholar
  47. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.CrossRefGoogle Scholar
  48. Gosling, S. D. (2001). From mice to men: What can we learn about personality from animal research? Psychological Bulletin, 127(1), 45–86.CrossRefGoogle Scholar
  49. Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488–501.CrossRefGoogle Scholar
  50. Gullone, E. (2000). The development of normal fear: A century of research. Clinical Psychology Review, 20(4), 429–451.CrossRefGoogle Scholar
  51. Hill, S. Y., Tessner, K., Wang, S., Carter, H., & Mcdermott, M. (2010). Temperament at 5-years of age predicts amygdala and orbitofrontal volume in the right hemisphere in adolescence. Psychiatry Research: Neuroimaging, 182(1), 14–21.CrossRefGoogle Scholar
  52. Hirshfeld, D. R., Rosenbaum, J. F., Biederman, J., Bolduc, E. A., Faraone, S. V., Snidman, N., … Kagan, J. (1992). Stable behavioral-inhibition and its association with anxiety disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 31(1), 103–111.CrossRefGoogle Scholar
  53. Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517–527.CrossRefGoogle Scholar
  54. Jarcho, J. M., Fox, N. A., Pine, D. S., Etkin, A., Leibenluft, E., Shechner, T., & Ernst, M. (2013). The neural correlates of emotion-based cognitive control in adults with early childhood behavioral inhibition. Biological Psychology, 92(2), 306–314.CrossRefGoogle Scholar
  55. Jarcho, J. M., Fox, N. A., Pine, D. S., Leibenluft, E., Shechner, T., Degnan, K. A., … Ernst, M. (2014). Enduring influence of early temperament on neural mechanisms mediating attention-emotion conflict in adults. Depression and Anxiety, 31(1), 53–62.CrossRefGoogle Scholar
  56. Kaffman, A., & Meaney, M. J. (2007). Neurodevelopmental sequelae of postnatal maternal care in rodents: Clinical and research implications of molecular insights. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48(3–4), 224–244.CrossRefGoogle Scholar
  57. Kagan, J., Reznick, J. S., & Snidman, N. (1998). Biological bases of childhood shyness. Science, 240(4849), 167–171.CrossRefGoogle Scholar
  58. Kagan, J., Reznick, J. S., Snidman, N., Gibbons, J., & Johnson, M. O. (1988). Childhood derivatives of inhibition and lack of inhibition to the unfamiliar. Child Development, 59(6), 1580–1589.CrossRefGoogle Scholar
  59. Kagan, J., & Snidman, N. (2004). The long shadow of temperament. Cambridge, MA: Harvard University Press.Google Scholar
  60. Kagan, J., Snidman, N., & Arcus, D. (1998). Childhood derivatives of high and low reactivity in infancy. Child Development, 69(6), 1483–1493.CrossRefGoogle Scholar
  61. Kalin, N. H., Shelton, S. E., & Davidson, R. J. (2004). The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. Journal of Neuroscience, 24(24), 5506–5515.CrossRefGoogle Scholar
  62. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 593–602.CrossRefGoogle Scholar
  63. Klumpp, H., Fitzgerald, D. A., & Phan, K. L. (2013). Neural predictors and mechanisms of cognitive behavioral therapy on threat processing in social anxiety disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 45, 83–91.CrossRefGoogle Scholar
  64. Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience and the developing prefrontal cortex. Proceedings of the National Academy of Sciences, 109(Supplement_2), 17186–17193.CrossRefGoogle Scholar
  65. McDermott, J. M., Pérez-Edgar, K., Henderson, H. A., Chronis-Tuscano, A., Pine, D. S., & Fox, N. A. (2009). A history of childhood behavioral inhibition and enhanced response monitoring in adolescence are linked to clinical anxiety. Biological Psychiatry, 65(5), 445–448.CrossRefGoogle Scholar
  66. McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 16–29.CrossRefGoogle Scholar
  67. Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K., & Koenigs, M. (2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biological Psychiatry, 77(3), 276–284.CrossRefGoogle Scholar
  68. Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature reviews. Neuroscience, 7(9), 697–709.PubMedGoogle Scholar
  69. Pitskel, N. B., Bolling, D. Z., Kaiser, M. D., Crowley, M. J., & Pelphrey, K. a. (2011). How grossed out are you? The neural bases of emotion regulation from childhood to adolescence. Developmental Cognitive Neuroscience, 1(3), 324–337.CrossRefGoogle Scholar
  70. Plichta, M. M., Grimm, O., Morgen, K., Mier, D., Sauer, C., Haddad, L., … Meyer-Lindenberg, A. (2014). Amygdala habituation: A reliable fMRI phenotype. NeuroImage, 103, 383–390.CrossRefGoogle Scholar
  71. Plomin, R., & Daniels, D. (1986). Genetics and shyness. In W. H. Jones, J. M. Cheek, & S. R. Briggs (Eds.), Shyness: Perspectives on research and treatment (pp. 63–80). New York, NY: Plenum.CrossRefGoogle Scholar
  72. Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309–322.CrossRefGoogle Scholar
  73. Qiu, A., Anh, T. T., Li, Y., Chen, H., Rifkin-Graboi, A., Broekman, B. F. P., … Meaney, M. J. (2015). Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Translational Psychiatry, 5(2), e508.CrossRefGoogle Scholar
  74. Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo, J., … Thompson, R. F. (2009). Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 92(2), 135–138.CrossRefGoogle Scholar
  75. Reeb-Sutherland, B. C. (2009). Startle response in behaviorally inhibited adolescents with a lifetime occurrence of anxiety disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 48(6), 610–617.CrossRefGoogle Scholar
  76. Robinson, J. L., Reznick, J. S., Kagan, J., & Corley, R. (1992). The heritability of inhibited and uninhibited behavior: A twin study. Developmental Psychology, 28(6), 1030–1037.CrossRefGoogle Scholar
  77. Roy, A. K., Benson, B. E., Degnan, K. A., Pérez-Edgar, K., Pine, D. S., Fox, N. A., & Ernst, M. (2014). Alterations in amygdala functional connectivity reflect early temperament. Biological Psychology, 103, 248–254.CrossRefGoogle Scholar
  78. Rutishauser, U., Mamelak, A. N., & Schuman, E. M. (2006). Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex. Neuron, 49(6), 805–813.CrossRefGoogle Scholar
  79. Scarr, S., & Salapatek, P. (1970). Patterns of fear development during infancy. Merrill-Palmer Quarterly, 16(1), 53–90.Google Scholar
  80. Schuyler, B. S., Kral, T. R. A., Jacquart, J., Burghy, C. A., Weng, H. Y., Perlman, D. M., … Davidson, R. J. (2014). Temporal dynamics of emotional responding: Amygdala recovery predicts emotional traits. Social Cognitive and Affective Neuroscience, 9(2), 176–181.CrossRefGoogle Scholar
  81. Schwartz, C. E., Kunwar, P. S., Greve, D. N., Kagan, J., Snidman, N. C., & Bloch, R. B. (2012). A phenotype of early infancy predicts reactivity of the amygdala in male adults. Molecular Psychiatry, 17(10), 1042–1050.CrossRefGoogle Scholar
  82. Schwartz, C. E., Kunwar, P. S., Greve, D. N., Moran, L. R., Viner, J. C., Covino, J. M., … Wallace, S. R. (2010). Structural differences in adult orbital and ventromedial prefrontal cortex predicted by infant temperament at 4 months of age. Archives of General Psychiatry, 67(1), 78–84.CrossRefGoogle Scholar
  83. Schwartz, C. E., Snidman, N., & Kagan, J. (1999). Adolescent social anxiety as an outcome of inhibited temperament in childhood. Journal of the American Academy of Child and Adolescent Psychiatry, 38(8), 1008–1015.CrossRefGoogle Scholar
  84. Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: Adult amygdalar response to novelty. Science, 300(5627), 1952–1953.CrossRefGoogle Scholar
  85. Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., Whalen, P. J., McMullin, K. G., & Rauch, S. L. (2003). Differential amygdalar response to novel versus newly familiar neutral faces: A functional MRI probe developed for studying inhibited temperament. Biological Psychiatry, 53(10), 854–862.CrossRefGoogle Scholar
  86. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.CrossRefGoogle Scholar
  87. Strange, B. A., Fletcher, P. C., Henson, R. N. A., Friston, K. J., Dolan, R. J., Square, Q., … Street, R. H. (1999). Segregating the functions of human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 4034–4039.CrossRefGoogle Scholar
  88. Suomi, S. J. (1997). Early determinants of behaviour: Evidence from primate studies. British Medical Bulletin, 53(1), 170–184.CrossRefGoogle Scholar
  89. Sylvester, C. M., Barch, D. M., Harms, M. P., Belden, A. C., Oakberg, T. J., Gold, A. L., … Pine, D. S. (2015). Early childhood behavioral inhibition predicts cortical thickness in adulthood. Journal of the American Academy of Child & Adolescent Psychiatry, 55(2), 122.e1–129.e1.Google Scholar
  90. Taber-Thomas, B. C., Morales, S., Hillary, F. G., & Pérez-Edgar, K. E. (2016). Altered topography of intrinsic functional connectivity in childhood risk for social anxiety. Depression and Anxiety, 33(11), 995–1004.CrossRefGoogle Scholar
  91. Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73(1), 16–43.CrossRefGoogle Scholar
  92. Turk-Browne, N. B., Scholl, B. J., & Chun, M. M. (2008). Babies and brains: Habituation in infant cognition and functional neuroimaging. Frontiers in Human Neuroscience, 2, 16.PubMedPubMedCentralGoogle Scholar
  93. Walker, D. L., & Davis, M. (1997). Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. The Journal of Neuroscience, 17(23), 9375–9383.CrossRefGoogle Scholar
  94. White, L. K., McDermott, J. M., Degnan, K. A., Henderson, H. A., & Fox, N. A. (2011). Behavioral inhibition and anxiety: The moderating roles of inhibitory control and attention shifting. Journal of Abnormal Child Psychology, 39(5), 735–747.CrossRefGoogle Scholar
  95. Williams, L. R., Degnan, K. A., Pérez-Edgar, K., Henderson, H. A., Rubin, K. H., Pine, D. S., … Fox, N. A. (2009). Impact of behavioral inhibition and parenting style on internalizing and externalizing problems from early childhood through adolescence. Journal of Abnormal Child Psychology, 37(8), 1063–1075.CrossRefGoogle Scholar
  96. Wilson, F. A., & Rolls, E. T. (1993). The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks. Experimental Brain Research, 93(3), 367–382.CrossRefGoogle Scholar
  97. Wittchen, H. U., Fröhlich, C., Behrendt, S., Günther, A., Rehm, J., Zimmermann, P., … Perkonigg, A. (2007). Cannabis use and cannabis use disorders and their relationship to mental disorders: A 10-year prospective-longitudinal community study in adolescents. Drug and Alcohol Dependence, 88(Suppl. 1), 60–70.CrossRefGoogle Scholar
  98. Woodward, L. J., & Fergusson, D. M. (2001). Life course outcomes of young people with anxiety disorders in adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 40(9), 1086–1093.CrossRefGoogle Scholar
  99. Wright, C. I., Fischer, H., Whalen, P. J., McInerney, S., Shin, L. M., & Rauch, S. L. (2001). Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport, 12(2), 379–383.CrossRefGoogle Scholar
  100. Yamaguchi, S., Hale, L. A., D’Esposito, M., & Knight, R. T. (2004). Rapid prefrontal-hippocampal habituation to novel events. Journal of Neuroscience, 24(23), 5356–5363.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleUSA
  2. 2.Massachusetts General and McLean HospitalsHarvard Medical SchoolBostonUSA

Personalised recommendations