Advertisement

The Neural Mechanisms of Behavioral Inhibition

Chapter

Abstract

Unfamiliar people, places, and objects often elicit wariness and distress in behaviorally inhibited infants. As behaviorally inhibited infants mature through childhood and become adolescents, peer-based social situations become the driving source of this wariness. The conflict between a desire for positive social interactions and fear of negative evaluation interferes with one of the primary “jobs” of adolescence: learning to successfully navigate an increasingly complex social world. Neural networks involved in social information processing, social learning, and social competence contribute to the maladaptive approach and avoidance response patterns and tendencies associated with behavioral inhibition. In the present chapter, we review the neural networks involved in social competence and social cognition, discuss key links between altered neural function and social cognition associated with behavioral inhibition, and highlight gaps in the field. Finally, we propose future directions to advance our understanding of the neural mechanisms that underlie behaviors and cognition elicited in novel social contexts for behaviorally inhibited youth.

Keywords

Temperament Brain function Social learning Social competence Psychopathology 

References

  1. Affrunti, N. W., Geronimi, E. M., & Woodruff-Borden, J. (2014). Temperament, peer victimization, and nurturing parenting in child anxiety: A moderated mediation model. Child Psychiatry and Human Development, 45(4), 483–492.  https://doi.org/10.1007/s10578-013-0418-2CrossRefPubMedGoogle Scholar
  2. Albert, D., Chein, J., & Steinberg, L. (2013). Peer influences on adolescent decision making. Current Directions in Psychological Science, 22(2), 114–120.  https://doi.org/10.1177/0963721412471347CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alcala-Lopez, D., Smallwood, J., Jefferies, E., Van Overwalle, F., Vogeley, K., Mars, R. B., … Bzdok, D. (2017). Computing the social brain Connectome across systems and states. Cerebral Cortex, 1–26.  https://doi.org/10.1093/cercor/bhx121CrossRefGoogle Scholar
  4. Bar-Haim, Y., Fox, N. A., Benson, B., Guyer, A. E., Williams, A., Nelson, E. E., … Ernst, M. (2009). Neural correlates of reward processing in adolescents with a history of inhibited temperament. Psychological Science, 20(8), 1009–1018.  https://doi.org/10.1111/j.1467-9280.2009.02401.xCrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23(3), 361–372.  https://doi.org/10.1016/j.conb.2012.12.012CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. Journal of Neuroscience, 20(11), 4311–4319.CrossRefGoogle Scholar
  7. Becker, M. P., Nitsch, A. M., Hewig, J., Miltner, W. H., & Straube, T. (2016). Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum. NeuroImage, 143, 50–57.  https://doi.org/10.1016/j.neuroimage.2016.09.022CrossRefPubMedGoogle Scholar
  8. Beesdo, K., Pine, D. S., Lieb, R., & Wittchen, H. U. (2010). Incidence and risk patterns of anxiety and depressive disorders and categorization of generalized anxiety disorder. Archives of General Psychiatry, 67(1), 47–57.  https://doi.org/10.1001/archgenpsychiatry.2009.177CrossRefPubMedGoogle Scholar
  9. Bick, J., Zhu, T., Stamoulis, C., Fox, N. A., Zeanah, C., & Nelson, C. A. (2015). Effect of early institutionalization and foster care on long-term white matter development: A randomized clinical trial. JAMA Pediatrics, 169(3), 211–219.  https://doi.org/10.1001/jamapediatrics.2014.3212CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic amygdala-cortical functional connectivity predicts social network size in humans. Journal of Neuroscience, 32(42), 14729–14741.  https://doi.org/10.1523/JNEUROSCI.1599-12.2012CrossRefPubMedGoogle Scholar
  11. Blackford, J. U., Allen, A. H., Cowan, R. L., & Avery, S. N. (2013). Amygdala and hippocampus fail to habituate to faces in individuals with an inhibited temperament. Social Cognitive and Affective Neuroscience, 8(2), 143–150.  https://doi.org/10.1093/scan/nsr078CrossRefPubMedGoogle Scholar
  12. Blackford, J. U., Avery, S. N., Cowan, R. L., Shelton, R. C., & Zald, D. H. (2011). Sustained amygdala response to both novel and newly familiar faces characterizes inhibited temperament. Social Cognitive and Affective Neuroscience, 6(5), 621–629.  https://doi.org/10.1093/scan/nsq073CrossRefPubMedGoogle Scholar
  13. Blackford, J. U., Avery, S. N., Shelton, R. C., & Zald, D. H. (2009). Amygdala temporal dynamics: Temperamental differences in the timing of amygdala response to familiar and novel faces. BMC Neuroscience, 10, 145.  https://doi.org/10.1186/1471-2202-10-145CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blackford, J. U., Clauss, J. A., Avery, S. N., Cowan, R. L., Benningfield, M. M., & VanDerKlok, R. M. (2014). Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition. Biological Psychology, 99, 15–25.  https://doi.org/10.1016/j.biopsycho.2014.02.003CrossRefPubMedPubMedCentralGoogle Scholar
  15. Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267–277.  https://doi.org/10.1038/nrn2353CrossRefGoogle Scholar
  16. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546.  https://doi.org/10.1016/j.tics.2004.10.003CrossRefPubMedPubMedCentralGoogle Scholar
  17. Braams, B. R., & Crone, E. A. (2017). Peers and parents: A comparison between neural activation when winning for friends and mothers in adolescence. Social Cognitive and Affective Neuroscience, 12(3), 417–426.  https://doi.org/10.1093/scan/nsw136CrossRefPubMedGoogle Scholar
  18. Brown, B. B., Bakken, J. P., Ameringer, S. W., & Mahon, S. D. (2008). A comprehensive conceptualization of the peer influence process in adolescence. Understanding Peer Influence in Children and Adolescents, 17–44.Google Scholar
  19. Brown, B. B., & Larson, J. (2009). Peer relationships in adolescence. In L. Steinberg & R. M. Lerner (Eds.), Handbook of adolescent psychology, Volume 2: Contextual influences on adolescent development (Vol. 2, p. 74). Hoboken, NJ: John Wiley & Sons.Google Scholar
  20. Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 2981–2990.  https://doi.org/10.1093/cercor/bht154CrossRefPubMedGoogle Scholar
  21. Buss, K. A. (2011). Which fearful toddlers should we worry about? Context, fear regulation, and anxiety risk. Developmental Psychology, 47(3), 804–819.  https://doi.org/10.1037/a0023227CrossRefPubMedPubMedCentralGoogle Scholar
  22. Buss, K. A., Davis, E. L., Kiel, E. J., Brooker, R. J., Beekman, C., & Early, M. C. (2013). Dysregulated fear predicts social wariness and social anxiety symptoms during kindergarten. Journal of Clinical Child and Adolescent Psychology, 42(5), 603–616.  https://doi.org/10.1080/15374416.2013.769170CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cabeleira, C. M., Steinman, S. A., Burgess, M. M., Bucks, R. S., MacLeod, C., Melo, W., & Teachman, B. A. (2014). Expectancy bias in anxious samples. Emotion, 14(3), 588.CrossRefGoogle Scholar
  24. Calvo, M. G., & Nummenmaa, L. (2016). Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cognition & Emotion, 30(6), 1081–1106.  https://doi.org/10.1080/02699931.2015.1049124CrossRefGoogle Scholar
  25. Caouette, J. D., & Guyer, A. E. (2014). Gaining insight into adolescent vulnerability for social anxiety from developmental cognitive neuroscience. Developmental Cognitive Neuroscience, 8, 65–76.CrossRefGoogle Scholar
  26. Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders – longitudinal evidence from a birth cohort. Archives of General Psychiatry, 53(11), 1033–1039.CrossRefGoogle Scholar
  27. Chronis-Tuscano, A., Degnan, K. A., Pine, D. S., Perez-Edgar, K., Henderson, H. A., Diaz, Y., … Fox, N. A. (2009). Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 48(9), 928–935.  https://doi.org/10.1097/CHI.0b013e3181ae09dfCrossRefPubMedPubMedCentralGoogle Scholar
  28. Cisler, J. M., & Koster, E. H. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clinical Psychology Review, 30(2), 203–216.  https://doi.org/10.1016/j.cpr.2009.11.003CrossRefPubMedGoogle Scholar
  29. Clauss, J. A., Avery, S. N., VanDerKlok, R. M., Rogers, B. P., Cowan, R. L., Benningfield, M. M., & Blackford, J. U. (2014). Neurocircuitry underlying risk and resilience to social anxiety disorder. Depression and Anxiety, 31(10), 822–833.  https://doi.org/10.1002/da.22265CrossRefPubMedPubMedCentralGoogle Scholar
  30. Clauss, J. A., & Blackford, J. U. (2012). Behavioral inhibition and risk for developing social anxiety disorder: A meta-analytic study. Journal of the American Academy of Child and Adolescent Psychiatry, 51(10), 1066–1075 e1061.  https://doi.org/10.1016/j.jaac.2012.08.002CrossRefPubMedPubMedCentralGoogle Scholar
  31. Coplan, R. J., Rubin, K. H., Fox, N. A., Calkins, S. D., & Stewart, S. L. (1994). Being alone, playing alone, and acting alone – distinguishing among reticence and passive and active solitude in young-children. Child Development, 65(1), 129–137.  https://doi.org/10.1111/j.1467-8624.1994.tb00739.xCrossRefPubMedPubMedCentralGoogle Scholar
  32. Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure & Function, 213(6), 525–533.  https://doi.org/10.1007/s00429-009-0208-6CrossRefGoogle Scholar
  33. Deater-Deckard, K. (2001). Annotation: Recent research examining the role of peer relationships in the development of psychopathology. Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(5), 565–579.  https://doi.org/10.1111/1469-7610.00753CrossRefGoogle Scholar
  34. Degnan, K. A., Almas, A. N., Henderson, H. A., Hane, A. A., Walker, O. L., & Fox, N. A. (2014). Longitudinal trajectories of social reticence with unfamiliar peers across early childhood. Developmental Psychology, 50(10), 2311–2323.  https://doi.org/10.1037/a0037751CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dunbar, R. I., & Shultz, S. (2007). Understanding primate brain evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1480), 649–658.  https://doi.org/10.1098/rstb.2006.2001CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ellis, B. J., Del Giudice, M., Dishion, T. J., Figueredo, A. J., Gray, P., Griskevicius, V., … Wilson, D. S. (2012). The evolutionary basis of risky adolescent behavior: Implications for science, policy, and practice. Developmental Psychology, 48(3), 598–623.  https://doi.org/10.1037/a0026220CrossRefPubMedGoogle Scholar
  37. Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93.  https://doi.org/10.1016/j.tics.2010.11.004CrossRefPubMedGoogle Scholar
  38. Feng, P., Zheng, Y., & Feng, T. Y. (2016). Resting-state functional connectivity between amygdala and the ventromedial prefrontal cortex following fear reminder predicts fear extinction. Social Cognitive and Affective Neuroscience, 11(6), 991–1001.  https://doi.org/10.1093/scan/nsw031CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fox, A. S., & Kalin, N. H. (2014). A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology. The American Journal of Psychiatry, 171(11), 1162–1173.  https://doi.org/10.1176/appi.ajp.2014.14040449CrossRefPubMedPubMedCentralGoogle Scholar
  40. Fox, N. A., Henderson, H. A., Marshall, P. J., Nichols, K. E., & Ghera, M. M. (2005). Behavioral inhibition: Linking biology and behavior within a developmental framework. Annual Review of Psychology, 56, 235–262.CrossRefGoogle Scholar
  41. Fox, N. A., Henderson, H. A., Rubin, K. H., Calkins, S. D., & Schmidt, L. A. (2001). Continuity and discontinuity of behavioral inhibition and exuberance: Psychophysiological and behavioral influences across the first four years of life. Child Development, 72(1), 1–21.CrossRefGoogle Scholar
  42. Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531–534.  https://doi.org/10.1016/j.neuron.2006.05.001CrossRefPubMedGoogle Scholar
  43. Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society B-Biological Sciences, 358(1431), 459–473.  https://doi.org/10.1098/rstb.2002.1218CrossRefPubMedCentralGoogle Scholar
  44. Fu, X., Taber-Thomas, B. C., & Perez-Edgar, K. (2017). Frontolimbic functioning during threat-related attention: Relations to early behavioral inhibition and anxiety in children. Biological Psychology, 122, 98–109.  https://doi.org/10.1016/j.biopsycho.2015.08.010CrossRefGoogle Scholar
  45. Galvan, A., Hare, T. A., Parra, C. E., Penn, J., Voss, H., Glover, G., & Casey, B. J. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26(25), 6885–6892.  https://doi.org/10.1523/Jneurosci.1062-06.2006CrossRefPubMedGoogle Scholar
  46. Gazelle, H., & Rudolph, K. D. (2004). Moving toward and away from the world: Social approach and avoidance trajectories in anxious solitary youth. Child Development, 75(3), 829–849.  https://doi.org/10.1111/j.1467-8624.2004.00709.xCrossRefPubMedGoogle Scholar
  47. Gobbini, M. I., & Haxby, J. V. (2007). Neural systems for recognition of familiar faces. Neuropsychologia, 45(1), 32–41.  https://doi.org/10.1016/j.neuropsychologia.2006.04.015CrossRefPubMedGoogle Scholar
  48. Goffman, E. (2009). Stigma: Notes on the management of spoiled identity. Simon and Schuster. New YorkGoogle Scholar
  49. Gold, A. L., Morey, R. A., & McCarthy, G. (2015). Amygdala-prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction. Biological Psychiatry, 77(4), 394–403.  https://doi.org/10.1016/j.biopsych.2014.03.030CrossRefPubMedGoogle Scholar
  50. Grabenhorst, F., & Rolls, E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Sciences, 15(2), 56–67.  https://doi.org/10.1016/j.tics.2010.12.004CrossRefPubMedGoogle Scholar
  51. Gunnar, M. R., & Hostinar, C. E. (2015). The social buffering of the hypothalamic-pituitary-adrenocortical axis in humans: Developmental and experiential determinants. Social Neuroscience, 10(5), 479–488.  https://doi.org/10.1080/17470919.2015.1070747CrossRefPubMedPubMedCentralGoogle Scholar
  52. Guyer, A. E., Benson, B., Choate, V. R., Bar-Haim, Y., Perez-Edgar, K., Jarcho, J. M., … Nelson, E. E. (2014). Lasting associations between early-childhood temperament and late-adolescent reward-circuitry response to peer feedback. Development and Psychopathology, 26(1), 229–243.  https://doi.org/10.1017/S0954579413000941CrossRefPubMedPubMedCentralGoogle Scholar
  53. Guyer, A. E., Choate, V. R., Pine, D. S., & Nelson, E. E. (2012). Neural circuitry underlying affective response to peer feedback in adolescence. Social Cognitive and Affective Neuroscience, 7(1), 81–92.  https://doi.org/10.1093/scan/nsr043CrossRefPubMedPubMedCentralGoogle Scholar
  54. Guyer, A. E., & Jarcho, J. M. (2018). Neuroscience and peer relations. In W. Bukowski, B. Laursen, & K. H. Rubin (Eds.), Handbook of peer interactions, relationships, and groups (2nd ed.). New York, NY: Guilford Press.Google Scholar
  55. Guyer, A. E., Jarcho, J. M., Perez-Edgar, K., Degnan, K. A., Pine, D. S., Fox, N. A., & Nelson, E. E. (2015). Temperament and parenting styles in early childhood differentially influence neural response to peer evaluation in adolescence. Journal of Abnormal Child Psychology, 43(5), 863–874.  https://doi.org/10.1007/s10802-015-9973-2CrossRefPubMedPubMedCentralGoogle Scholar
  56. Guyer, A. E., Lau, J. Y., McClure-Tone, E. B., Parrish, J., Shiffrin, N. D., Reynolds, R. C., … Nelson, E. E. (2008). Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Archives of General Psychiatry, 65(11), 1303–1312.  https://doi.org/10.1001/archpsyc.65.11.1303CrossRefPubMedPubMedCentralGoogle Scholar
  57. Guyer, A. E., McClure-Tone, E. B., Shiffrin, N. D., Pine, D. S., & Nelson, E. E. (2009). Probing the neural correlates of anticipated peer evaluation in adolescence. Child Development, 80(4), 1000–1015.CrossRefGoogle Scholar
  58. Guyer, A. E., Nelson, E. E., Perez-Edgar, K., Hardin, M. G., Roberson-Nay, R., Monk, C. S., … Ernst, M. (2006). Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. Journal of Neuroscience, 26(24), 6399–6405.CrossRefGoogle Scholar
  59. Hampton, A. N., Adolphs, R., Tyszka, M. J., & O'Doherty, J. P. (2007). Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. Neuron, 55(4), 545–555.  https://doi.org/10.1016/j.neuron.2007.07.022CrossRefPubMedGoogle Scholar
  60. Hanish, L. D., & Guerra, N. G. (2004). Aggressive victims, passive victims, and bullies: Developmental continuity or developmental change? Merrill-Palmer Quarterly-Journal of Developmental Psychology, 50(1), 17–38.  https://doi.org/10.1353/mpq.2004.0003CrossRefGoogle Scholar
  61. Hardee, J. E., Benson, B. E., Bar-Haim, Y., Mogg, K., Bradley, B. P., Chen, G., … Perez-Edgar, K. (2013). Patterns of neural connectivity during an attention Bias task moderate associations between early childhood temperament and internalizing symptoms in young adulthood. Biological Psychiatry, 74(4), 273–279.  https://doi.org/10.1016/j.biopsych.2013.01.036CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hasenfratz, L., Benish-Weisman, M., Steinberg, T., & Knafo-Noam, A. (2015). Temperament and peer problems from early to middle childhood: Gene-environment correlations with negative emotionality and sociability. Development and Psychopathology, 27(4 Pt 1), 1089–1109.  https://doi.org/10.1017/S095457941500070XCrossRefPubMedGoogle Scholar
  63. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233.  https://doi.org/10.1016/S1364-6613(00)01482-0CrossRefPubMedGoogle Scholar
  64. Heimberg, R. G., Brozovich, F. A., & Rapee, R. M. (2010). A cognitive behavioral model of social anxiety disorder: Update and extension. In Social anxiety (2nd ed., pp. 395–422). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  65. Helfinstein, S. M., Benson, B., Perez-Edgar, K., Bar-Haim, Y., Detloff, A., Pine, D. S., … Ernst, M. (2011). Striatal responses to negative monetary outcomes differ between temperamentally inhibited and non-inhibited adolescents. Neuropsychologia, 49(3), 479–485.  https://doi.org/10.1016/j.neuropsychologia.2010.12.015CrossRefPubMedGoogle Scholar
  66. Henderson, H. A., Marshall, P. J., Fox, N. A., & Rubin, K. H. (2004). Psychophysiological and behavioral evidence for varying forms and functions of nonsocial behavior in preschoolers. Child Development, 75(1), 251–263.  https://doi.org/10.1111/j.1467-8624.2004.00667.xCrossRefPubMedGoogle Scholar
  67. Holt-Lunstad, J., Smith, T. B., & Layton, J. B. (2010). Social relationships and mortality risk: A meta-analytic review. PLoS Medicine, 7(7), e1000316.  https://doi.org/10.1371/journal.pmed.1000316CrossRefPubMedPubMedCentralGoogle Scholar
  68. Howard, J. D., Gottfried, J. A., Tobler, P. N., & Kahnt, T. (2015). Identity-specific coding of future rewards in the human orbitofrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 112(16), 5195–5200.  https://doi.org/10.1073/pnas.1503550112CrossRefPubMedPubMedCentralGoogle Scholar
  69. Jarcho, J. M., Davis, M. M., Shechner, T., Degnan, K. A., Henderson, H. A., Stoddard, J., … Nelson, E. E. (2016). Early-childhood social reticence predicts brain function in preadolescent youths during distinct forms of peer evaluation. Psychological Science, 27(6), 821–835.  https://doi.org/10.1177/0956797616638319CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jarcho, J. M., Fox, N. A., Pine, D. S., Etkin, A., Leibenluft, E., Shechner, T., & Ernst, M. (2013). The neural correlates of emotion-based cognitive control in adults with early childhood behavioral inhibition. Biological Psychology, 92(2), 306–314.  https://doi.org/10.1016/j.biopsycho.2012.09.008CrossRefGoogle Scholar
  71. Jarcho, J. M., Fox, N. A., Pine, D. S., Leibenluft, E., Shechner, T., Degnan, K. A., … Ernst, M. (2014). Enduring influence of early temperament on neural mechanisms mediating attention-emotion conflict in adults. Depression and Anxiety, 31(1), 53–62.  https://doi.org/10.1002/da.22140CrossRefGoogle Scholar
  72. Jarcho, J. M., Leibenluft, E., Walker, O. L., Fox, N. A., Pine, D. S., & Nelson, E. E. (2013). Neuroimaging studies of pediatric social anxiety: Paradigms, pitfalls and a new direction for investigating the neural mechanisms. Biol Mood Anxiety Disord, 3, 14.  https://doi.org/10.1186/2045-5380-3-14CrossRefPubMedPubMedCentralGoogle Scholar
  73. Jarcho, J. M., Romer, A. L., Shechner, T., Galvan, A., Guyer, A. E., Leibenluft, E., … Nelson, E. E. (2015). Forgetting the best when predicting the worst: Preliminary observations on neural circuit function in adolescent social anxiety. Developmental Cognitive Neuroscience, 13, 21–31.  https://doi.org/10.1016/j.dcn.2015.03.002CrossRefPubMedPubMedCentralGoogle Scholar
  74. Jenkins, A. C., & Mitchell, J. P. (2011). Medial prefrontal cortex subserves diverse forms of self-reflection. Social Neuroscience, 6(3), 211–218.  https://doi.org/10.1080/17470919.2010.507948CrossRefPubMedGoogle Scholar
  75. Kagan, J. (2012). The biography of behavioral inhibition. In M. Zentner & R. L. Shiner (Eds.), Handbook of temperament (pp. 69–82). New York, NY: Guilford Press.Google Scholar
  76. Kagan, J., & Snidman, N. (1991). Infant predictors of inhibited and uninhibited profiles. Psychological Science, 2(1), 40–44.  https://doi.org/10.1111/j.1467-9280.1991.tb00094.xCrossRefGoogle Scholar
  77. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.CrossRefGoogle Scholar
  78. Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16(11), 559–572.  https://doi.org/10.1016/j.tics.2012.09.006CrossRefPubMedPubMedCentralGoogle Scholar
  79. Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425.  https://doi.org/10.1162/0898929042304796CrossRefPubMedGoogle Scholar
  80. Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21(16), RC159.CrossRefGoogle Scholar
  81. Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event-related fMRI. NeuroImage, 18(2), 263–272.CrossRefGoogle Scholar
  82. Kochenderfer-Ladd, B. (2003). Identification of aggressive and asocial victims and the stability of their peer victimization. Merrill-Palmer Quarterly-Journal of Developmental Psychology, 49(4), 401–425.  https://doi.org/10.1353/mpq.2003.0022CrossRefGoogle Scholar
  83. Lahat, A., Benson, B. E., Pine, D. S., Fox, N. A., & Ernst, M. (2016). Neural responses to reward in childhood: Relations to early behavioral inhibition and social anxiety. Social Cognitive and Affective Neuroscience.  https://doi.org/10.1093/scan/nsw122
  84. Lahat, A., Perez-Edgar, K., Degnan, K. A., Guyer, A. E., Lejuez, C. W., Ernst, M., … Fox, N. A. (2012). Early childhood temperament predicts substance use in young adults. Translational Psychiatry, 2, e157.  https://doi.org/10.1038/tp.2012.87CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lin, A., Adolphs, R., & Rangel, A. (2012). Social and monetary reward learning engage overlapping neural substrates. Social Cognitive and Affective Neuroscience, 7(3), 274–281.  https://doi.org/10.1093/scan/nsr006CrossRefPubMedGoogle Scholar
  86. Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., Wheelwright, S. J., Sadek, S. A., Suckling, J., … Consortium, M. A. (2010). Shared neural circuits for mentalizing about the self and others. Journal of Cognitive Neuroscience, 22(7), 1623–1635.  https://doi.org/10.1162/jocn.2009.21287CrossRefPubMedGoogle Scholar
  87. Masten, C. L., Telzer, E. H., Fuligni, A. J., Lieberman, M. D., & Eisenberger, N. I. (2012). Time spent with friends in adolescence relates to less neural sensitivity to later peer rejection. Social Cognitive and Affective Neuroscience, 7(1), 106–114.  https://doi.org/10.1093/scan/nsq098CrossRefPubMedGoogle Scholar
  88. Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1, 167–195.  https://doi.org/10.1146/annurev.clinpsy.1.102803.143916CrossRefPubMedGoogle Scholar
  89. McLaughlin, K. A., Sheridan, M. A., Winter, W., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2014). Widespread reductions in cortical thickness following severe early-life deprivation: A neurodevelopmental pathway to attention-deficit/hyperactivity disorder. Biological Psychiatry, 76(8), 629–638.  https://doi.org/10.1016/j.biopsych.2013.08.016CrossRefPubMedGoogle Scholar
  90. Metereau, E., & Dreher, J. C. (2015). The medial orbitofrontal cortex encodes a general unsigned value signal during anticipation of both appetitive and aversive events. Cortex, 63, 42–54.  https://doi.org/10.1016/j.cortex.2014.08.012CrossRefPubMedGoogle Scholar
  91. Meyer, M. L., & Lieberman, M. D. (2012). Social working memory: Neurocognitive networks and directions for future research. Frontiers in Psychology, 3, 571.  https://doi.org/10.3389/fpsyg.2012.00571CrossRefPubMedPubMedCentralGoogle Scholar
  92. Miranda, R., & Mennin, D. S. (2007). Depression, generalized anxiety disorder, and certainty in pessimistic predictions about the future. Cognitive Therapy and Research, 31(1), 71–82.CrossRefGoogle Scholar
  93. Moor, B. G., van Leijenhorst, L., Rombouts, S. A. R. B., Crone, E. A., & Van der Molen, M. W. (2010). Do you like me? Neural correlates of social evaluation and developmental trajectories. Social Neuroscience, 5(5-6), 461–482.CrossRefGoogle Scholar
  94. Morales, S., Fu, X., & Perez-Edgar, K. E. (2016). A developmental neuroscience perspective on affect-biased attention. Developmental Cognitive Neuroscience, 21, 26–41.  https://doi.org/10.1016/j.dcn.2016.08.001CrossRefPubMedPubMedCentralGoogle Scholar
  95. Morales, S., Taber-Thomas, B. C., & Perez-Edgar, K. E. (2017). Patterns of attention to threat across tasks in behaviorally inhibited children at risk for anxiety. Developmental Science, 20(2).  https://doi.org/10.1111/desc.12391CrossRefGoogle Scholar
  96. Morrison, R. G., & Nottebohm, F. (1993). Role of a telencephalic nucleus in the delayed song learning of socially isolated zebra finches. Journal of Neurobiology, 24(8), 1045–1064.  https://doi.org/10.1002/neu.480240805CrossRefPubMedGoogle Scholar
  97. Murphy, N. A., Hall, J. A., Schmid Mast, M., Ruben, M. A., Frauendorfer, D., Blanch-Hartigan, D., … Nguyen, L. (2015). Reliability and validity of nonverbal thin slices in social interactions. Personality and Social Psychology Bulletin, 41(2), 199–213.  https://doi.org/10.1177/0146167214559902CrossRefPubMedGoogle Scholar
  98. Narr, R. K., Allen, J. P., Tan, J. S., & Loeb, E. L. (2017). Close friendship strength and broader peer group desirability as differential predictors of adult mental health. Child Development.  https://doi.org/10.1111/cdev.12905
  99. Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A. T., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest early intervention project. Science, 318(5858), 1937–1940.  https://doi.org/10.1126/science.1143921CrossRefGoogle Scholar
  100. Nelson, C. A., Westerlund, A., McDermott, J. M., Zeanah, C. H., & Fox, N. A. (2013). Emotion recognition following early psychosocial deprivation. Development and Psychopathology, 25(2), 517–525.  https://doi.org/10.1017/S0954579412001216CrossRefPubMedPubMedCentralGoogle Scholar
  101. Nelson, E. E., & Guyer, A. E. (2011). The development of the ventral prefrontal cortex and social flexibility. Developmental Cognitive Neuroscience, 1(3), 233–245.  https://doi.org/10.1016/j.dcn.2011.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  102. Nelson, E. E., Jarcho, J. M., & Guyer, A. E. (2016). Social re-orientation and brain development: An expanded and updated view. Developmental Cognitive Neuroscience, 17, 118–127.  https://doi.org/10.1016/j.dcn.2015.12.008CrossRefPubMedGoogle Scholar
  103. Nelson, E. E., Leibenluft, E., McClure, E. B., & Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35(2), 163–174.CrossRefGoogle Scholar
  104. Newcomb, A. F., Bukowski, W. M., & Pattee, L. (1993). Children’s peer relations: A meta-analytic review of popular, rejected, neglected, controversial, and average sociometric status. Psychological Bulletin, 113(1), 99–128.CrossRefGoogle Scholar
  105. O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. J., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452–454.  https://doi.org/10.1126/science.1094285CrossRefPubMedGoogle Scholar
  106. O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95–102.  https://doi.org/10.1038/82959CrossRefPubMedGoogle Scholar
  107. Ormel, J., Raven, D., van Oort, F., Hartman, C. A., Reijneveld, S. A., Veenstra, R., … Oldehinkel, A. J. (2015). Mental health in Dutch adolescents: A TRAILS report on prevalence, severity, age of onset, continuity and co-morbidity of DSM disorders. Psychological Medicine, 45(2), 345–360.  https://doi.org/10.1017/S0033291714001469CrossRefPubMedGoogle Scholar
  108. Pedersen, S., Vitaro, F., Barker, E. D., & Borge, A. I. (2007). The timing of middle-childhood peer rejection and friendship: Linking early behavior to early-adolescent adjustment. Child Development, 78(4), 1037–1051.  https://doi.org/10.1111/j.1467-8624.2007.01051.xCrossRefPubMedGoogle Scholar
  109. Perez-Edgar, K., Hardee, J. E., Guyer, A. E., Benson, B. E., Nelson, E. E., Gorodetsky, E., … Ernst, M. (2014). DRD4 and striatal modulation of the link between childhood behavioral inhibition and adolescent anxiety. Social Cognitive and Affective Neuroscience, 9(4), 445–453.  https://doi.org/10.1093/scan/nst001CrossRefPubMedGoogle Scholar
  110. Perez-Edgar, K., Roberson-Nay, R., Hardin, M. G., Poeth, K., Guyer, A. E., Nelson, E. E., … Ernst, M. (2007). Attention alters neural responses to evocative faces in behaviorally inhibited adolescents. NeuroImage, 35(4), 1538–1546.  https://doi.org/10.1016/j.neuroimage.2007.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  111. Powell, J., Lewis, P. A., Roberts, N., Garcia-Finana, M., & Dunbar, R. I. (2012). Orbital prefrontal cortex volume predicts social network size: An imaging study of individual differences in humans. Proceedings of the Biological Sciences, 279(1736), 2157–2162.  https://doi.org/10.1098/rspb.2011.2574CrossRefGoogle Scholar
  112. Rapee, R. M., & Spence, S. H. (2004). The etiology of social phobia: Empirical evidence and an initial model. Clinical Psychology Review, 24(7), 737–767.  https://doi.org/10.1016/j.cpr.2004.06.004CrossRefPubMedGoogle Scholar
  113. Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision-making. Annual Review of Psychology, 62, 23–48.  https://doi.org/10.1146/annurev.psych.121208.131647CrossRefPubMedGoogle Scholar
  114. Rodriguez, P. F., Aron, A. R., & Poldrack, R. A. (2006). Ventral-striatal/nucleus-accumbens sensitivity to prediction errors during classification learning. Human Brain Mapping, 27(4), 306–313.  https://doi.org/10.1002/hbm.20186CrossRefPubMedGoogle Scholar
  115. Rothbart, M. K. (2012). Advances in temperament: History, concepts, and measures. In M. Zentner & R. L. Shiner (Eds.), Handbook of temperament (pp. 3–20). New York, NY: Guilford Press.Google Scholar
  116. Roy, A. K., Benson, B. E., Degnan, K. A., Perez-Edgar, K., Pine, D. S., Fox, N. A., & Ernst, M. (2014). Alterations in amygdala functional connectivity reflect early temperament. Biological Psychology, 103, 248–254.  https://doi.org/10.1016/j.biopsycho.2014.09.007CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rubin, K. H., & Burgess, K. B. (2001). Social withdrawal and anxiety. The Developmental Psychopathology of Anxiety, 407–434, New York, NY: Oxford University Press.Google Scholar
  118. Rubin, K. H., Coplan, R. J., & Bowker, J. C. (2009). Social withdrawal in childhood. Annual Review of Psychology, 60, 141–171.  https://doi.org/10.1146/annurev.psych.60.110707.163642CrossRefPubMedPubMedCentralGoogle Scholar
  119. Rubin, K. H., Hymel, S., Mills, R. S., & Rose-Krasnor, L. (1991). Conceptualizing different developmental pathways to and from social isolation in childhood. In D. Cicchetti & S. L. Toth (Eds.), Internalizing and externalizing expressions of dysfunction (Vol. 2, pp. 91–122) New York, NY: Psychology Press.Google Scholar
  120. Ruff, C. C., & Fehr, E. (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15(8), 549–562.  https://doi.org/10.1038/nrn3776CrossRefPubMedGoogle Scholar
  121. Saxbe, D., Del Piero, L., Immordino-Yang, M. H., Kaplan, J., & Margolin, G. (2015). Neural correlates of adolescents’ viewing of parents’ and peers’ emotions: Associations with risk-taking behavior and risky peer affiliations. Social Neuroscience, 10(6), 592–604.  https://doi.org/10.1080/17470919.2015.1022216CrossRefPubMedPubMedCentralGoogle Scholar
  122. Schultz, W. (2004). Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Current Opinion in Neurobiology, 14(2), 139–147.  https://doi.org/10.1016/j.conb.2004.03.017CrossRefPubMedGoogle Scholar
  123. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.  https://doi.org/10.1126/science.275.5306.1593CrossRefPubMedGoogle Scholar
  124. Schwartz, C. E., Kunwar, P. S., Greve, D. N., Kagan, J., Snidman, N. C., & Bloch, R. B. (2012). A phenotype of early infancy predicts reactivity of the amygdala in male adults. Molecular Psychiatry, 17(10), 1042–1050.  https://doi.org/10.1038/mp.2011.96CrossRefGoogle Scholar
  125. Schwartz, C. E., Kunwar, P. S., Greve, D. N., Moran, L. R., Viner, J. C., Covino, J. M., … Wallace, S. R. (2010). Structural differences in adult orbital and ventromedial prefrontal cortex predicted by infant temperament at 4 months of age. Archives of General Psychiatry, 67(1), 78–84.  https://doi.org/10.1001/archgenpsychiatry.2009.171CrossRefPubMedPubMedCentralGoogle Scholar
  126. Schwartz, C. E., Kunwar, P. S., Hirshfeld-Becker, D. R., Henin, A., Vangel, M. G., Rauch, S. L., … Rosenbaum, J. F. (2015). Behavioral inhibition in childhood predicts smaller hippocampal volume in adolescent offspring of parents with panic disorder. Translational Psychiatry, 5, e605.  https://doi.org/10.1038/tp.2015.95CrossRefPubMedPubMedCentralGoogle Scholar
  127. Schwartz, C. E., Snidman, N., & Kagan, J. (1999). Adolescent social anxiety as an outcome of inhibited temperament in childhood. Journal of the American Academy of Child and Adolescent Psychiatry, 38(8), 1008–1015.  https://doi.org/10.1097/00004583-199908000-00017CrossRefPubMedGoogle Scholar
  128. Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: Adult amygdalar response to novelty. Science, 300(5627), 1952–1953.  https://doi.org/10.1126/science.1083703CrossRefGoogle Scholar
  129. Shenhav, A., & Greene, J. D. (2014). Integrative moral judgment: Dissociating the roles of the amygdala and ventromedial prefrontal cortex. Journal of Neuroscience, 34(13), 4741–4749.  https://doi.org/10.1523/Jneurosci.3390-13.2014CrossRefPubMedGoogle Scholar
  130. Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A., & Nelson, C. A. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences of the United States of America, 109(32), 12927–12932.  https://doi.org/10.1073/pnas.1200041109CrossRefPubMedPubMedCentralGoogle Scholar
  131. Silverman, M. H., Jedd, K., & Luciana, M. (2015). Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies. NeuroImage, 122, 427–439.  https://doi.org/10.1016/j.neuroimage.2015.07.083CrossRefPubMedPubMedCentralGoogle Scholar
  132. Smetana, J. G., Campione-Barr, N., & Metzger, A. (2006). Adolescent development in interpersonal and societal contexts. Annual Review of Psychology, 57, 255–284.  https://doi.org/10.1146/annurev.psych.57.102904.190124CrossRefPubMedGoogle Scholar
  133. Spielberg, J. M., Jarcho, J. M., Dahl, R. E., Pine, D. S., Ernst, M., & Nelson, E. E. (2015). Anticipation of peer evaluation in anxious adolescents: Divergence in neural activation and maturation. Social Cognitive and Affective Neuroscience, 10(8), 1084–1091.  https://doi.org/10.1093/scan/nsu165CrossRefPubMedGoogle Scholar
  134. Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418–425.  https://doi.org/10.1016/j.tics.2004.07.008CrossRefPubMedGoogle Scholar
  135. Stamoulis, C., Vanderwert, R. E., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2017). Neuronal networks in the developing brain are adversely modulated by early psychosocial neglect. Journal of Neurophysiology, 118(4), 2275–2288.  https://doi.org/10.1152/jn.00014.2017CrossRefPubMedGoogle Scholar
  136. Steinberg, L., & Morris, A. S. (2001). Adolescent development. Annual Review of Psychology, 52, 83–110.  https://doi.org/10.1146/annurev.psych.52.1.83CrossRefPubMedGoogle Scholar
  137. Sugimura, N., & Rudolph, K. D. (2012). Temperamental differences in Children’s reactions to peer victimization. Journal of Clinical Child and Adolescent Psychology, 41(3), 314–328.  https://doi.org/10.1080/15374416.2012.656555CrossRefPubMedPubMedCentralGoogle Scholar
  138. Suway, J. G., Degnan, K. A., Sussman, A. L., & Fox, N. A. (2012). The relations among theory of mind, Behavioral inhibition, and peer interactions in early childhood. Social Development, 21(2), 331–342.  https://doi.org/10.1111/j.1467-9507.2011.00634.xCrossRefPubMedGoogle Scholar
  139. Sylvester, C. M., Barch, D. M., Harms, M. P., Belden, A. C., Oakberg, T. J., Gold, A. L., … Pine, D. S. (2016). Early childhood Behavioral inhibition predicts cortical thickness in adulthood. Journal of the American Academy of Child and Adolescent Psychiatry, 55(2), 122–129.  https://doi.org/10.1016/j.jaac.2015.11.007CrossRefPubMedGoogle Scholar
  140. Taber-Thomas, B. C., Morales, S., Hillary, F. G., & Perez-Edgar, K. E. (2016a). Altered topography of intrinsic functional connectivity in childhood risk for social anxiety. Depression and Anxiety, 33(11), 995–1004.  https://doi.org/10.1002/da.22508CrossRefGoogle Scholar
  141. Taber-Thomas, B. C., Morales, S., Hillary, F. G., & Perez-Edgar, K. E. (2016b). Altered topography of intrinsic functional connectivity in childhood risk for social anxiety. Depression and Anxiety.  https://doi.org/10.1002/da.22508CrossRefGoogle Scholar
  142. Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science, 307(5715), 1642–1645.  https://doi.org/10.1126/science.1105370CrossRefPubMedGoogle Scholar
  143. Tremblay, S., Sharika, K. M., & Platt, M. L. (2017). Social decision-making and the brain: A comparative perspective. Trends in Cognitive Sciences, 21(4), 265–276.  https://doi.org/10.1016/j.tics.2017.01.007CrossRefPubMedPubMedCentralGoogle Scholar
  144. Troller-Renfree, S., McDermott, J. M., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2015). The effects of early foster care intervention on attention biases in previously institutionalized children in Romania. Developmental Science, 18(5), 713–722.  https://doi.org/10.1111/desc.12261CrossRefPubMedGoogle Scholar
  145. Troller-Renfree, S., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2016). Deficits in error monitoring are associated with externalizing but not internalizing behaviors among children with a history of institutionalization. Journal of Child Psychology and Psychiatry, 57(10), 1145–1153.  https://doi.org/10.1111/jcpp.12604CrossRefPubMedGoogle Scholar
  146. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews. Neuroscience, 16(1), 55–61.  https://doi.org/10.1038/nrn3857CrossRefPubMedGoogle Scholar
  147. Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45(1), 174–194.  https://doi.org/10.1016/j.neuropsychologia.2006.06.003CrossRefPubMedGoogle Scholar
  148. Wessa, M., Heissler, J., Schonfelder, S., & Kanske, P. (2013). Goal-directed behavior under emotional distraction is preserved by enhanced task-specific activation. Social Cognitive and Affective Neuroscience, 8(3), 305–312.  https://doi.org/10.1093/scan/nsr098CrossRefPubMedGoogle Scholar
  149. Williams, L. R., Fox, N. A., Lejuez, C. W., Reynolds, E. K., Henderson, H. A., Perez-Edgar, K. E., … Pine, D. S. (2010). Early temperament, propensity for risk-taking and adolescent substance-related problems: A prospective multi-method investigation. Addictive Behaviors, 35(12), 1148–1151.  https://doi.org/10.1016/j.addbeh.2010.07.005CrossRefGoogle Scholar
  150. Yacubian, J., Sommer, T., Schroeder, K., Glascher, J., Braus, D. F., & Buchel, C. (2007). Subregions of the ventral striatum show preferential coding of reward magnitude and probability. NeuroImage, 38(3), 557–563.  https://doi.org/10.1016/j.neuroimage.2007.08.007CrossRefPubMedGoogle Scholar
  151. Zaki, J., Hennigan, K., Weber, J., & Ochsner, K. N. (2010). Social cognitive conflict resolution: Contributions of domain-general and domain-specific neural systems. Journal of Neuroscience, 30(25), 8481–8488.  https://doi.org/10.1523/JNEUROSCI.0382-10.2010CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PsychologyTemple UniversityPhiladelphiaUSA
  2. 2.Department of Human Ecology and Center for Mind and BrainUniversity of California DavisDavisUSA

Personalised recommendations