Behavioral Inhibition in Rodents: A Model to Study Causes and Health Consequences of Temperament



Behavioral inhibition (BI), a trait related to fearful temperament and withdrawal/avoidance of novelty, is an important predictor of adult health trajectories. However, specific mechanisms underlying this temperament-health relation are poorly understood. In order to model underlying physiological and developmental processes associated with behavioral inhibition to identify causal mechanisms for specific health trajectories, we developed a rodent model of early emerging behavioral inhibition. This behavioral trait of low exploration has been documented in many species and represents a relatively basic behavioral phenotype, which supports the goal of developing a non-human animal model. In this chapter, I review the behavioral and physiological characteristics of the rodent behavioral inhibition model, with an eye toward identifying biological mechanisms that may bias behaviorally inhibited individuals toward certain health trajectories. In addition, I review information on developmental correlates and influences on behavioral inhibition, with an eye toward identifying and testing interesting social and environmental interventions that could minimize health biases. I complete the chapter with a discussion of areas of future research with a rodent behavioral inhibition model.


Health trajectories Physiological mechanisms Stable traits Flexible traits Social-inhibition 



Many students and colleagues have contributed to the studies summarized in this current chapter. In particular, I want to acknowledge the work of three former graduate students: Kerry C. Michael, Christina M. Ragan, and Michael J. Caruso for their dedicated work in developing, troubleshooting, and perfecting physiological methods to assess neurobiological, cardiovascular, and immunological processes. In addition, many undergraduate students contributed to this work, with special thanks to Ryan Moser and Alex Bruscke for cardiovascular work, Catherine Barrett for maternal behavior work, Colleen Kovacsics for life-span work, Jason Gillon for corticosterone supplementation work, Sammy Leathers and LaDara Godbolt for behavioral and immunity work, and Kevin Fomalont and Brian Coleman for brain receptor work. Characterization of the behavioral inhibition phenotype in rodents would not have been possible without their persistence and contributions. Finally, I thank Martha K. McClintock who supported initial work in this arena; her scientific generosity, both intellectual and financial, supported the genesis of many of the ideas presented in this chapter. 


  1. Bell, I. R., Martino, G. M., Meredith, K. E., Schwartz, G. E., Siani, M. M., & Morrow, F. D. (1993). Vascular disease risk factors, urinary free cortisol, and health histories in older adults: Shyness and gender interactions. Biological Psychology, 35, 37–49.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Biederman, J., Rosenbaum, J. F., Hirshfeld, D. R., Faraone, S. V., Bolduc, E. A., Gersten, M., … Reznick, J. S. (1990). Archives of General Psychiatry, Psychiatric correlates of behavioral inhibition in young children of parents with and without psychiatric disorders. 47, 21–26.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Blanchard, R. J., Flannelly, K. J., & Blanchard, D. C. (1986). Defensive behaviors of laboratory and wild Rattus norvegicus. Journal of Comparative Psychology, 100, 101–107.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Blanchard, R. J., Nikulina, J. N., Sakai, R. R., McKittrick, C., McEwen, B., & Blanchard, D. C. (1998). Behavioral and endocrine change following chronic predatory stress. Physiology & Behavior, 63, 561–569.CrossRefGoogle Scholar
  5. Brindley, D. N., & Rolland, Y. (1989). Possible connections between stress, diabetes, obesity, hypertension and altered lipoprotein metabolism that may result in arteriosclerosis. Clinical Science, 77, 453–461.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Burgess, K. B., Marshall, P. J., Rubin, K. H., & Fox, N. A. (2003). Infant attachment and temperament as predictors of subsequent externalizing problems and cardiac physiology. Journal of Child Psychology and Psychiatry, 44, 819–831.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Buss, A. H., & Plomin, R. (1984). Temperament: Early developing personality traits. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  8. Buss, K. A., Davidson, R. J., Kalin, N. H., & Goldsmith, H. H. (2004). Context-specific freezing and associated physiological reactivity as a dysregulated fear response. Developmental Psychology, 40, 583–594.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Caldji, C., Diorio, J., & Meaney, M. J. (2003). Variations in maternal care alter GABAA receptor subunit expression in brain regions associated with fear. Neuropsychopharmacology, 28, 1950–1959.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of neural systems mediating the expression of behavioral fearfulness in adulthood in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95, 5335–5340.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Campeau, S., Nyhuis, T. J., Sasse, S. K., Day, H. E., & Masini, C. V. (2008). Acute and chronic effects of ferret odor exposure in Sprague-Dawley rats. Neuroscience and Biobehavioral Reviews, 32, 1277–1286.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Caruso, M. J., Crouse, R. A., & Cavigelli, S. A. (2015). Corticosteroid receptor expression is linearly related to individual differences in novelty exploration. Poster presented International Society for Developmental Psychobiology. Developmental Psychobiology, 57, 866.Google Scholar
  13. Caruso, M. J., McClintock, M. K., & Cavigelli, S. A. (2014). Temperament moderates the influence of periadolescent social experience on behavior and adrenocortical activity in adult male rats. Hormones and Behavior, 66, 517–524.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cavigelli, S. A. (2005). Animal personality and health. Behaviour, 142, 1223–1244.CrossRefGoogle Scholar
  15. Cavigelli, S. A., & McClintock, M. K. (2003). Fear of novelty in infant rats predicts adult corticosterone dynamics and an early death. Proceedings of the National Academy of Sciences of the United States of America, 100, 16131–16136.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cavigelli, S. A., Michael, K. C., & Ragan, C. M. (2013). Behavioral, physiological, and health biases in laboratory rodents: A basis for understanding mechanistic links between human personality and health. In C. Carere & D. Maestripieri (Eds.), Animal personalities: Behavior, physiology and evolution. Chicago, IL: University of Chicago Press.Google Scholar
  17. Cavigelli, S. A., Michael, K. C., West, S. G., & Klein, L. C. (2011). Behavioral responses to physical vs. social novelty in male and female laboratory rats. Behavioural Processes, 88, 56–59.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cavigelli, S. A., Ragan, C. M., Barrett, C. E., & Michael, K. C. (2010). Within-litter variance in rat maternal behavior. Behavioural Processes, 84, 696–704.PubMedCrossRefGoogle Scholar
  19. Cavigelli, S. A., Stine, M. M., Kovacsics, C., Jefferson, A., Diep, M. N., & Barrett, C. E. (2007). Behavioral inhibition and glucocorticoid dynamics in a rodent model. Physiology & Behavior, 92, 897–905.CrossRefGoogle Scholar
  20. Cavigelli, S. A., Yee, J. R., McClintock, M. K. (2006). Infant temperament predicts life span in female rats that develop spontaneous tumors. Hormones and Behavior, 50, 454–62.PubMedCrossRefGoogle Scholar
  21. Cavigelli, S. A., Ragan, C. M., Michael, K. C., Kovacsics, C. E., Bruscke, A. P. (2009). Stable behavioral inhibition and glucocorticoid production as predictors of longevity. Physiology & Behavior, 98, 205–14.CrossRefGoogle Scholar
  22. Cho, S., & Buss, K. A. (2017). Toddler parasympathetic regulation and fear: Links to maternal appraisal and behavior. Developmental Psychobiology, 59, 197–208.PubMedCrossRefGoogle Scholar
  23. Chronis-Tuscano, A., Degnan, K. A., Pine, D. S., Pérez-Edgar, K., Henderson, H. A., Diaz, Y., … Fox, N. A. (2009). Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 928–935.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Clauss, J. A., & Blackford, J. U. (2012). Behavioral inhibition and risk for developing social anxiety disorder: A meta-analytic study. Journal of the American Academy of Child and Adolescent Psychiatry, 51, 1066–1075.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Costa, P. T., & McCrae, R. R. (1992). Four ways five factors are basic. Personality and Individual Differences, 13, 653–665.CrossRefGoogle Scholar
  26. Dellu, F., Piazza, P. V., Mayo, W., Le Moal, M., & Simon, H. (1996). Novelty-seeking in rats: Biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology, 34, 136–145.PubMedCrossRefGoogle Scholar
  27. Dhabhar, F. S., & McEwen, B. S. (1997). Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain, Behavior, and Immunity, 11, 286–306.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dhabhar, F. S., & McEwen, B. S. (1999). Enhancing versus suppressive effects of stress hormones on skin immune function. Proceedings of the National Academy of Sciences of the United States of America, 96, 1059–1064.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Einon, D. F., & Morgan, M. (1976). Habituation of object contact in socially-reared and isolated rats (Rattus norvegicus). Animal Behaviour, 24, 415–420.CrossRefGoogle Scholar
  30. Elenkov, I. J. (2004). Glucocorticoids and the Th1/Th2 balance. Annals of the New York Academy of Sciences, 1024, 138–146.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Elenkov, I. J., & Chrousos, G. P. (1999). Stress hormones, Th1/Th2 patterns, pro/−anti-inflammatory cytokines and susceptibility to disease. Trends in Endocrinology and Metabolism, 10, 359–368.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ellenbroek, B., & Youn, J. (2016). Rodent models in neuroscience research: is it a rat race? Disease Models and Mechanisms, 9, 1079–1087.CrossRefGoogle Scholar
  33. Fernandes, C., González, M. I., Wilson, C. A., & File, S. E. (1999). Factor analysis shows that female rat behaviour is characterized primarily by activity, male rats are driven by sex and anxiety. Pharmacology, Biochemistry, and Behavior, 64, 731–738.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Forster, S. E., Finn, P. R., & Brown, J. W. (2017). Neural responses to negative outcomes predict success in community-based substance use treatment. Addiction, 112, 884–896.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Francis, D. D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 1155–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. García-Coll, C., Kagan, J., & Reznick, J. S. (1984). Behavioral inhibition in young children. Child Development, 55, 1005–1019.CrossRefGoogle Scholar
  37. Gatt, J. M., Clark, C. R., Kemp, A. H., Liddell, B. J., Dobson-Stone, C., Kuan, S. A., … Williams, L. M. (2007). A genotype-endophenotype-phenotype path model of depressed mood: Integrating cognitive and emotional markers. Journal of Integrative Neuroscience, 6, 75–104.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gentsch, C., Lichtsteiner, M., Driscoll, P., & Feer, H. (1982). Differential hormonal and physiological response to stress in roman high and low-avoidance rats. Physiology & Behavior, 28, 259–263.CrossRefGoogle Scholar
  39. Gilad, G. M., & Gilad, V. H. (1995). Strain, stress, neurodegeneration and longevity. Mechanisms of Ageing and Development, 78, 75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gosling, S. D., & John, O. P. (1999). Personality dimensions and non-human animals: A cross-species review. Current Directions in Psychological Science, 8, 69–75.CrossRefGoogle Scholar
  41. Gruenewald, T. L., Seeman, T. E., Ryff, C. D., Karlamangla, A. S., & Singer, B. H. (2006). Combinations of biomarkers predictive of later life mortality. Proceedings of the National Academy of Sciences of the United States of America, 103, 14158–14163.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gurevitz, M., Geva, R., Varon, M., & Leitner, Y. (2014). Early markers in infants and toddlers for development of ADHD. Journal of Attention Disorders, 18, 14–22.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hane, A. A., & Fox, N. A. (2006). Ordinary variations in maternal caregiving influence human infants' stress reactivity. Psychological Science, 17, 550–556.CrossRefGoogle Scholar
  44. Heponiemi, T., Keltikangas-Järvinen, L., Kettunen, J., Puttonen, S., & Ravaja, N. (2004). BIS-BAS sensitivity and cardiac autonomic stress profiles. Psychophysiology, 41, 37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hirshfeld, D. R., Rosenbaum, J. F., Biederman, J., Bolduc, E. A., Faraone, S. V., Snidman, N., … Kagan, J. (1992). Stable behavioral inhibition and its association with anxiety disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 31, 103–111.CrossRefGoogle Scholar
  46. Hirshfeld-Becker, D. R., Biederman, J., Henin, A., Faraone, S., Davis, S., Harrington, K., & Rosenbaum, J. F. (2007). Behavioral inhibition in preschool children at risk is a specific predictor of middle childhood social anxiety: A five-year follow-up. Journal of Developmental and Behavioral Pediatrics, 28, 225–233.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kabbaj, M., Devin, D. P., Savage, V. R., & Akil, H. (2000). Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: Differential expression of stress-related molecules. The Journal of Neuroscience, 20, 6983–6988.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kagan, J., Reznick, J. S., Clarke, C., Snidman, N., & García-Coll, C. (1984). Behavioral inhibition to the unfamiliar. Child Development, 55, 2212–2225.CrossRefGoogle Scholar
  49. Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in children. Child Development, 58, 1459–1473.CrossRefGoogle Scholar
  50. Kagan, J., & Snidman, N. (1991). Infant predictors of inhibited and uninhibited profiles. Psychological Science, 2, 40–44.CrossRefGoogle Scholar
  51. Kagan, J., & Snidman, N. (1999). Early childhood predictors of adult anxiety disorders. Biological Psychiatry, 46, 1536–1541.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kagan, J., Snidman, N., McManis, M., Woodward, S., & Hardway, C. (2002). One measure, one meaning: Multiple measures, clear meaning. Development and Psychopathology, 14, 463–475.CrossRefGoogle Scholar
  53. Kakolewski, J. W., Deaux, E., Christensen, J., & Case, B. (1971). Diurnal patterns of water and food intake and body weight changes in rats with hypothalamic lesions. The American Journal of Physiology, 221, 711–718.PubMedPubMedCentralGoogle Scholar
  54. Kennedy, S. J., Rapee, R. M., Edwards, S. L. (2009). A selective intervention program for inhibited preschool-aged children of parents with an anxiety disorder: effects on current anxiety disorders and temperament. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 602–9.CrossRefGoogle Scholar
  55. Kertes, D. A., Donzella, B., Talge, N. M., Garvin, M. C., Van Ryzin, M. J., & Gunnar, M. R. (2009). Inhibited temperament and parent emotional availability differentially predict young children’s cortisol responses to novel social and nonsocial events. Developmental Psychobiology, 51, 521–532.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kiel, E. J., & Buss, K. A. (2011). Prospective relations among fearful temperament, protective parenting, and social withdrawal: The role of maternal accuracy in a moderated mediation framework. Journal of Abnormal Child Psychology, 39, 953–966.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lee, M., & Williams, D. (1974). Changes in licking behavior of rat mother following handling of young. Animal Behaviour, 22, 679–681.CrossRefGoogle Scholar
  58. Lightman, S. L., Wiles, C. C., Atkinson, H. C., Henley, D. E., Russell, G. M., Leendertz, J. A., … Conway-Campbell, B. L. (2008). The significance of glucocorticoid pulsatility. European Journal of Pharmacology, 583, 255–262.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lovic, V., & Fleming, A. S. (2004). Artificially-reared female rats show reduced prepulse inhibition and deficits in the attentional shifting task – reversal of effects with maternal-licking stimulation. Behavioural Brain Research, 148, 209–219.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Maggi, E. (1998). The Th1/Th2 paradigm in allergy. Immunotechnology, 3, 233–44.PubMedCrossRefGoogle Scholar
  61. Marshall, P. J., & Stevenson-Hinde, J. (1998). Behavioral inhibition, heart period, and respiratory sinus arrhythmia in young children. Developmental Psychobiology, 33, 283–292.PubMedCrossRefGoogle Scholar
  62. Marwine, A., & Collier, G. (1979). The rat at the waterhole. Journal of Comparative and Physiological Psychology, 93, 391–402.CrossRefGoogle Scholar
  63. McCarter R. J., & Cavigelli S. A. Behavior and glucocorticoid production in young adulthood predicts metabolic rate in late adulthood. Manuscript.Google Scholar
  64. McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences, 896, 30–47.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 1161–1192.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Michael, K., Bonneau, R. H., Crouse, R. A., Godbolt, L., Caruso, M. J., Hohmann, C., & Cavigelli, S. A. in press Divergent immune responses in high- vs low-exploration rats. Under revision.Google Scholar
  67. Morales, S., Pérez-Edgar, K. E., & Buss, K. A. (2015). Attention biases towards and away from threat mark the relation between early dysregulated fear and the later emergence of social withdrawal. Journal of Abnormal Child Psychology, 43, 1067–1078.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nachmias, M., Gunnar, M., Mangelsdorf, S., Parritz, R. H., & Buss, K. (1996). Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Development, 67, 508–522.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Nanda, S. A., Qi, C., Roseboom, P. H., & Kalin, N. H. (2008). Predator stress induces behavioral inhibition and amygdala somatostatin receptor 2 gene expression. Genes, Brain, and Behavior, 7, 639–648.PubMedPubMedCentralCrossRefGoogle Scholar
  70. O’Leary-Barrett, M. Mâsse, B. Pihl, R., Stewart, S., Séguin, J. R., & Conrod, P. (2017). A cluster-randomised controlled trial evaluating the effects of delaying onset of adolescent substance abuse on cognitive development and addiction following a selective, personality-targeted intervention program: The co-venture trial. Addiction, Epub ahead of print. 112, 1871–81PubMedCrossRefPubMedCentralGoogle Scholar
  71. Pan, P., Fleming, A. S., Lawson, D., Jenkins, J. M., & McGowan, P. O. (2014). Within- and between-litter maternal care alter behavior and gene regulation in female offspring. Behavioral Neuroscience, 128, 736–748.PubMedCrossRefGoogle Scholar
  72. Pérez-Álvarez, L., Baeza, I., Arranz, L., Marco, E. M., Borcel, E., Guaza, C., … De la Fuente, M. (2005). Behavioral, endocrine and immunological characteristics of a murine model of premature aging. Developmental and Comparative Immunology, 29, 965–976.PubMedCrossRefGoogle Scholar
  73. Pérez-Edgar, K., & Fox, N. A. (2005). Temperament and anxiety disorders. Child & Adolescent Psychiatric Clinics of North America, 14, 681–706.CrossRefGoogle Scholar
  74. Pérez-Edgar, K., Reeb-Sutherland, B. C., McDermott, J. M., White, L. K., Henderson, H. A., Degnan, K. A., … Fox, N. A. (2011). Attention biases to threat link behavioral inhibition to social withdrawal over time in very young children. Journal of Abnormal Child Psychology, 39, 885–895.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pérez-Edgar, K., Schmidt, L. A., Henderson, H. A., Schulkin, J., & Fox, N. A. (2008). Salivary cortisol levels and infant temperament shape developmental trajectories in boys at risk for behavioral maladjustment. Psychoneuroendocrinology, 33, 916–925.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pisula, W., & Siegel, J. (2005). Exploratory behavior as a function of environmental novelty and complexity in male and female rats. Psychological Reports, 97, 631–638.PubMedCrossRefGoogle Scholar
  77. Qi, C., Roseboom, P. H., Nanda, S. A., Lane, J. C., Speers, J. M., Kalin, N. H. (2010). Anxiety-related behavioral inhibition in rats: a model to examine mechanisms underlying the risk to develop stress-related psychopathology. Genes, Brain and Behavior, 9, 974–84.CrossRefGoogle Scholar
  78. Ragan, C. M., Harding, K. M., & Lonstein, J. S. (2016). Associations among within-litter differences in early mothering received and later emotional behaviors, mothering, and cortical tryptophan hydroxylase-2 expression in female laboratory rats. Hormones and Behavior, 77, 62–71.PubMedCrossRefGoogle Scholar
  79. Ragan, C. M., Loken, E., Stifter, C. A., & Cavigelli, S. A. (2012). Within-litter variance in early rat pup-mother interactions and adult offspring responses to novelty. Developmental Psychobiology, 54, 199–206.PubMedCrossRefGoogle Scholar
  80. Raone, A., Cassanelli, A., Scheggi, S., Rauggi, R., Danielli, B., & De Montis, M. G. (2007). Hypothalamus-pituitary-adrenal modifications consequent to chronic stress exposure in an experimental model of depression in rats. Journal of Neuroscience, 146, 1734–1742.CrossRefGoogle Scholar
  81. Rapee, R. M. (2013). The preventative effects of a brief, early intervention for preschool-aged children at risk for internalizing: Follow-up into middle adolescence. Journal of Child Psychology and Psychiatry, 54, 780–788.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rapee, R. M., Kennedy, S., Ingram, M., Edwards, S., & Sweeney, L. (2005). Prevention and early intervention of anxiety disorders in inhibited preschool children. Journal of Consulting and Clinical Psychology, 73, 488–497.CrossRefGoogle Scholar
  83. Ray, J., & Hansen, S. (2004). Temperament in the rat: Sex differences and hormonal influences on harm avoidance and novelty seeking. Behavioral Neuroscience, 118, 488–497.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Réale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews, 82, 291–318.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Reeb-Sutherland, B. C., Helfinstein, S. M., Degnan, K. A., Pérez-Edgar, K., Henderson, H. A., Lissek, S., … Fox, N. A. (2009). Startle response in behaviorally inhibited adolescents with a lifetime occurrence of anxiety disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 610–617.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Reeb-Sutherland, B. C., Vanderwert, R. E., Degnan, K. A., Marshall, P. J., Pérez-Edgar, K., Chronis-Tuscano, A., … Fox, N. A. (2009). Attention to novelty in behaviorally inhibited adolescents moderates risk for anxiety. Journal of Child Psychology and Psychiatry, 50, 1365–1372.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Reznick, J. S., Kagan, J., Snidman, N., Gersten, M., Baak, K., & Rosenberg, A. (1986). Inhibited and uninhibited children: A follow-up study. Child Development, 57, 660–680.CrossRefGoogle Scholar
  88. Roberts, B. W., & Delvecchio, W. F. (2000). The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. Psychological Bulletin, 126, 3–25.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Rothbart, M. K., Ahadi, S. A., Hershey, K. L., & Fisher, P. (2001). Investigations of temperament at three to seven years: The children’s behavior questionnaire. Child Development, 72, 1394–1408.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sachser, N., Kaiser, S., & Hennessy, M. B. (2013). Behavioural profiles are shaped by social experience: When, how and why. Philosophical Transactions of the Royal Society B, 368, 20120344CrossRefGoogle Scholar
  91. Schneirla, T. C. (1965). Aspects of stimulation and organization in approach/withdrawal processes underlying vertebrate behavioral development. Advances in the Study of Behaviour, 1, 1–74.CrossRefGoogle Scholar
  92. Schwartz, C. E., Snidman, N., & Kagan, J. (1999). Journal of the American Academy of Child and Adolescent Psychiatry, 38, 1008–1015.PubMedCrossRefGoogle Scholar
  93. Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: Adult amygdalar response to novelty. Science, 300, 1952–1953.CrossRefGoogle Scholar
  94. Stern, J. M. (1997). Offspring-induced nurturance: Animal-human parallels. Developmental Psychobiology, 31, 19–37.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Stevenson-Hinde, J., & Marshall, P. J. (1999). Behavioral inhibition, heart period, and respiratory sinus arrhythmia: An attachment perspective. Child Development, 70, 805–816.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Stevenson-Hinde, J., Stillwell-Barnes, R., & Zunz, M. (1980). Subjective assessment of rhesus monkeys over four successive years. Primates, 21, 66–82.CrossRefGoogle Scholar
  97. Stifter, C. A., & Corey, J. M. (2001). Vagal regulation and observed social behavior in infancy. Social Development, 10, 189–201.CrossRefGoogle Scholar
  98. Suomi, S. J. (1987). Genetic and maternal contributions to individual differences in rhesus monkey behavioral development. In N. A. Krasnegor, E. M. Blass, & M. A. Hofer (Eds.), Perinatal development: A psychobiological perspective (pp. 397–419). San Diego, CA: Academic Press.Google Scholar
  99. Swan, G. E., & Carmelli, D. (1996). Curiosity and mortality in aging adults: A 5-year follow-up of the western collaborative group study. Psychology and Aging, 11, 449–453.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Takahashi, L. K., & Kim, H. (1994). Intracranial action of corticosterone facilitates the development of behavioral inhibition in the adrenalectomized preweanling rat. Neuroscience Letters, 176, 272–276.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Thomas, A., & Chess, S. (1977). Temperament and development. New York, NY: Brunner/Mazel.Google Scholar
  102. Turner, S. M., Beidel, D. C., & Wolff, P. L. (1996). Is behavioral inhibition related to the anxiety disorders? Clinical Psychology Review, 16, 157–172.CrossRefGoogle Scholar
  103. van de Garde, M. D. B., Martinez, F. O., Melgert, B. N., Hylkema, M. N., Jonkers, R. E., & Hamann, J. (2014). Chronic exposure to glucocorticoids shapes gene expression and modulates innate and adaptive activation pathways in macrophages with distinct changes in leukocyte attraction. Journal of Immunology, 192, 1196–1208.CrossRefGoogle Scholar
  104. Wilckens, T., & De Rijk, R. (1997). Glucocorticoids and immune function: Unknown dimensions and new frontiers. Immunology Today, 18, 418–424.PubMedCrossRefGoogle Scholar
  105. Wilson, D. S., Clark, A. B., Coleman, K., & Dearstyne, T. (1994). Shyness and boldness in humans and other animals. Trends in Ecology & Evolution, 9, 442–446.CrossRefGoogle Scholar
  106. Zhu, L., Liu, M., Li, H., Chen, C., Han, Z., Wu, H., . . . Zhou, QG. (2014). The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity. PLoS One 9: e97689.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biobehavioral HealthThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations