Advertisement

Relations between Behavioral Inhibition, Cognitive Control, and Anxiety: Novel Insights Provided by Parsing Subdomains of Cognitive Control

Chapter

Abstract

The temperament of behavioral inhibition (BI) is classically defined based on behavioral observations of a child’s fear and avoidance of novelty. Such behavioral observations have proven powerful in identifying individual differences in temperament, and such differences have been shown to be predictive of later developmental outcomes, particularly levels of shyness or anxiety. However, behavioral observations alone leave open several questions, including: (1) How does the brain of a child high in behavioral inhibition differ from a child low in behavioral inhibition? (2) Which domains of cognition are directly related to variation in behavioral inhibition? (3) For domains of cognition not directly related to behavioral inhibition, how do individual differences interact with behavioral inhibition to predict later risk for anxiety? Examining these questions, research has demonstrated that individual differences in the child’s ability to monitor and control their behaviors when trying to complete a goal, a set of processes known as “cognitive control,” may change the likelihood of a child high in behavioral inhibition developing later anxiety. However, relations between behavioral inhibition and cognitive control have been inconsistent across studies. Here, we leverage a cognitive neuroscience framework to review studies that have investigated the interrelations between behavioral inhibition, cognitive control, and anxiety. Critically, we separate cognitive control into the subdomains of “monitoring” and “control instantiation” as well as further parse control instantiation based on domain and time course. In making these distinctions, we show that there is consistent evidence that the behavioral inhibition phenotype is directly related to increased monitoring, but not levels of control instantiation. However, behavioral inhibition is related to the time course of control, and both monitoring and control interact with behavioral inhibition to predict increased risk for the development of anxiety. We suggest that continued progress in understanding the interrelations between behavioral inhibition and cognitive control will require a similar framework that separates cognitive control into subdomains.

Keywords

Behavioral inhibition Anxiety Response monitoring Cognitive control Inhibitory control Error related negativity 

References

  1. Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13(3), 214–228. https://doi.org/10.1177/1073858407299288 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barker, T. V., Troller-Renfree, S., Pine, D. S., & Fox, N. A. (2015). Individual differences in social anxiety affect the salience of errors in social contexts. Cognitive, Affective, & Behavioral Neuroscience, 15(4), 723–735. https://doi.org/10.3758/s13415-015-0360-9 CrossRefGoogle Scholar
  3. Bengson, J. J., Mangun, G. R., & Mazaheri, A. (2012). The neural markers of an imminent failure of response inhibition. NeuroImage, 59(2), 1534–1539.CrossRefGoogle Scholar
  4. Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a go/NoGo task. Clinical Neurophysiology, 112(12), 2224–2232.CrossRefGoogle Scholar
  5. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624.CrossRefGoogle Scholar
  6. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113.CrossRefGoogle Scholar
  7. Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39(4), 713–726. https://doi.org/10.1016/S0896-6273(03)00466-5 CrossRefPubMedGoogle Scholar
  8. Buzzell, G. A., Beatty, P. J., Paquette, N. A., Roberts, D. M., & McDonald, C. G. (2017). Error-induced blindness: Error detection leads to impaired sensory processing and lower accuracy at short response-stimulus intervals. Journal of Neuroscience, 37, 2895–2903.CrossRefGoogle Scholar
  9. Buzzell, G. A., Richards, J. E., White, L. K., Barker, T. V., Pine, D. S., & Fox, N. A. (2017). Development of the error-monitoring system from ages 9–35: Unique insight provided by MRI-constrained source localization of EEG. NeuroImage, 157, 13–26. https://doi.org/10.1016/j.neuroimage.2017.05.045 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buzzell, G. A., Roberts, D. M., Baldwin, C. L., & McDonald, C. G. (2013). An electrophysiological correlate of conflict processing in an auditory spatial Stroop task: The effect of individual differences in navigational style. International Journal of Psychophysiology, 90(2), 265–271. https://doi.org/10.1016/j.ijpsycho.2013.08.008 CrossRefPubMedGoogle Scholar
  11. Buzzell, G. A., Roberts, D. M., Fedota, J. R., Thompson, J. C., Parasuraman, R., & McDonald, C. G. (2016). Uncertainty-dependent activity within the ventral striatum predicts task-related changes in response strategy. Cognitive, Affective, & Behavioral Neuroscience, 16(2), 219–233.CrossRefGoogle Scholar
  12. Buzzell, G. A., Troller-Renfree, S. V., Barker, T. V., Bowman, L. C., Chronis-Tuscano, A., Henderson, H. A., … Fox, N. A. (2017). A neurobehavioral mechanism linking behaviorally inhibited temperament and later adolescent social anxiety. Journal of the American Academy of Child & Adolescent Psychiatry, 56(12), 1097–1105. https://doi.org/10.1016/j.jaac.2017.10.007 CrossRefGoogle Scholar
  13. Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology - Paris, 109(1), 3–15.CrossRefGoogle Scholar
  14. Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220–238.CrossRefGoogle Scholar
  15. Chronis-Tuscano, A., Degnan, K. A., Pine, D. S., Perez-Edgar, K., Henderson, H. A., Diaz, Y., … Fox, N. A. (2009). Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 48(9), 928–935. https://doi.org/10.1097/CHI.0b013e3181ae09df CrossRefPubMedPubMedCentralGoogle Scholar
  16. Clark, D. M., & Wells, A. (1995). A cognitive model of social phobia. Social Phobia: Diagnosis, Assessment, and Treatment, 41(68), 00022–00023.Google Scholar
  17. Clauss, J. A., & Blackford, J. U. (2012). Behavioral inhibition and risk for developing social anxiety disorder: A meta-analytic study. Journal of the American Academy of Child and Adolescent Psychiatry, 51(10), 1066.e1–1075.e1. https://doi.org/10.1016/j.jaac.2012.08.002 CrossRefGoogle Scholar
  18. Coplan, R. J., Rubin, K. H., Fox, N. A., Calkins, S. D., & Stewart, S. L. (1994). Being alone, playing alone, and acting alone: Distinguishing among reticence and passive and active solitude in young children. Child Development, 65(1), 129–137.CrossRefGoogle Scholar
  19. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201.CrossRefGoogle Scholar
  20. Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233.CrossRefGoogle Scholar
  21. Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., Von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25(50), 11730–11737.CrossRefGoogle Scholar
  22. Degnan, K. A., Almas, A. N., Henderson, H. A., Hane, A. A., Walker, O. L., & Fox, N. A. (2014). Longitudinal trajectories of social reticence with unfamiliar peers across early childhood. Developmental Psychology, 50(10), 2311–2323. https://doi.org/10.1037/a0037751 CrossRefPubMedPubMedCentralGoogle Scholar
  23. der Borght, L. V., Schevernels, H., Burle, B., & Notebaert, W. (2016). Errors disrupt subsequent early attentional processes. PLoS One, 11(4), e0151843. https://doi.org/10.1371/journal.pone.0151843 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336.CrossRefGoogle Scholar
  25. Fox, N. A., Henderson, H. A., Marshall, P. J., Nichols, K. E., & Ghera, M. M. (2005). Behavioral inhibition: Linking biology and behavior within a developmental framework. Annual Review of Psychology, 56, 235–262.CrossRefGoogle Scholar
  26. Fox, N. A., Henderson, H. A., Rubin, K. H., Calkins, S. D., & Schmidt, L. A. (2001). Continuity and discontinuity of behavioral inhibition and exuberance: Psychophysiological and behavioral influences across the first four years of life. Child Development, 72(1), 1–21.CrossRefGoogle Scholar
  27. Fox, N. A., Snidman, N., Haas, S. A., Degnan, K. A., & Kagan, J. (2015). The relations between reactivity at 4 months and behavioral inhibition in the second year: Replication across three independent samples. Infancy, 20(1), 98–114. https://doi.org/10.1111/infa.12063 CrossRefGoogle Scholar
  28. Frenkel, T. I., Fox, N. A., Pine, D. S., Walker, O. L., Degnan, K. A., & Chronis-Tuscano, A. (2015). Early childhood behavioral inhibition, adult psychopathology and the buffering effects of adolescent social networks: A twenty-year prospective study. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 56(10), 1065–1073. https://doi.org/10.1111/jcpp.12390 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J. (2012). The error-related negativity (ERN/ne). In S. J. Luck & E. S. Kappenman (Eds.), Oxford library of psychology. The Oxford handbook of event-related potential components (pp. 231–291). New York, NY: Oxford University Press.Google Scholar
  30. Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the ERN and the significance of errors. Psychophysiology, 42(2), 151–160.CrossRefGoogle Scholar
  31. Henderson, H. A., Pine, D. S., & Fox, N. A. (2015). Behavioral inhibition and developmental risk: A dual-processing perspective. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 40(1), 207–224. https://doi.org/10.1038/npp.2014.189 CrossRefGoogle Scholar
  32. Herrmann, M. J., Römmler, J., Ehlis, A.-C., Heidrich, A., & Fallgatter, A. J. (2004). Source localization (LORETA) of the error-related-negativity (ERN/ne) and positivity (Pe). Cognitive Brain Research, 20(2), 294–299.CrossRefGoogle Scholar
  33. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709. https://doi.org/10.1037/0033-295X.109.4.679 CrossRefPubMedGoogle Scholar
  34. Jarcho, J. M., Fox, N. A., Pine, D. S., Etkin, A., Leibenluft, E., Shechner, T., & Ernst, M. (2013). The neural correlates of emotion-based cognitive control in adults with early childhood behavioral inhibition. Biological Psychology, 92(2), 306–314. https://doi.org/10.1016/j.biopsycho.2012.09.008 CrossRefPubMedGoogle Scholar
  35. Jarcho, J. M., Fox, N. A., Pine, D. S., Leibenluft, E., Shechner, T., Degnan, K. A., … Ernst, M. (2014). Enduring influence of early temperament on neural mechanisms mediating attention–emotion conflict in adults. Depression and Anxiety, 31(1), 53–62. https://doi.org/10.1002/da.22140 CrossRefPubMedGoogle Scholar
  36. Kagan, J., Reznick, J. S., Clarke, C., Snidman, N., & Garcia-Coll, C. (1984). Behavioral inhibition to the unfamiliar. Child Development, 55(6), 2212–2225. https://doi.org/10.2307/1129793 CrossRefGoogle Scholar
  37. Kagan, J., Reznick, S., & Snidman, N. (1988). Biological bases of childhood shyness. Science, 240(4849), 167.CrossRefGoogle Scholar
  38. Kagan, J., & Snidman, N. (1991). Infant predictors of inhibited and uninhibited profiles. Psychological Science, 2(1), 40–44.CrossRefGoogle Scholar
  39. Kagan, J., & Snidman, N. (2004). The long shadow of temperament. Cambridge, MA: Harvard University Press.Google Scholar
  40. Kertz, S. J., Belden, A. C., Tillman, R., & Luby, J. (2015). Cognitive control deficits in shifting and inhibition in preschool age children are associated with increased depression and anxiety over 7.5 years of development. Journal of Abnormal Child Psychology. https://doi.org/10.1007/s10802-015-0101-0 CrossRefGoogle Scholar
  41. Lahat, A., Lamm, C., Chronis-Tuscano, A., Pine, D. S., Henderson, H. A., & Fox, N. A. (2014). Early behavioral inhibition and increased error monitoring predict later social phobia symptoms in childhood. Journal of the American Academy of Child and Adolescent Psychiatry, 53(4), 447–455. https://doi.org/10.1016/j.jaac.2013.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lahat, A., Walker, O. L., Lamm, C., Degnan, K. A., Henderson, H. A., & Fox, N. A. (2014). Cognitive conflict links behavioral inhibition and social problem solving during social exclusion in childhood. Infant and Child Development, 23(3), 273–282. https://doi.org/10.1002/icd.1845 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lamm, C., Walker, O. L., Degnan, K. A., Henderson, H. A., Pine, D. S., McDermott, J. M., & Fox, N. A. (2014). Cognitive control moderates early childhood temperament in predicting social behavior in seven year old children: An ERP study. Developmental Science, 17(5), 667–681. https://doi.org/10.1111/desc.12158 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lengua, L. J. (2003). Associations among emotionality, self-regulation, adjustment problems, and positive adjustment in middle childhood. Journal of Applied Developmental Psychology, 24(5), 595–618. https://doi.org/10.1016/j.appdev.2003.08.002 CrossRefGoogle Scholar
  45. Masaki, H., Maruo, Y., Meyer, A., & Hajcak, G. (2017). Neural correlates of choking under pressure: Athletes high in sports anxiety monitor errors more when performance is being evaluated. Developmental Neuropsychology, 42(2), 104–112. https://doi.org/10.1080/87565641.2016.1274314 CrossRefPubMedPubMedCentralGoogle Scholar
  46. McDermott, J. M., Perez-Edgar, K., Henderson, H. A., Chronis-Tuscano, A., Pine, D. S., & Fox, N. A. (2009). A history of childhood behavioral inhibition and enhanced response monitoring in adolescence are linked to clinical anxiety. Biological Psychiatry, 65(5), 445–448.CrossRefGoogle Scholar
  47. Meyer, A. (2017). A biomarker of anxiety in children and adolescents: A review focusing on the error-related negativity (ERN) and anxiety across development. Developmental Cognitive Neuroscience, 27(Supplement C), 58–68. https://doi.org/10.1016/j.dcn.2017.08.001 CrossRefPubMedGoogle Scholar
  48. Moran, T. P., Bernat, E. M., Aviyente, S., Schroder, H. S., & Moser, J. S. (2015). Sending mixed signals: Worry is associated with enhanced initial error processing but reduced call for subsequent cognitive control. Social Cognitive and Affective Neuroscience, 10(11), 1548–1556.CrossRefGoogle Scholar
  49. Moser, J. S., Moran, T. P., Schroder, H. S., Donnellan, M. B., & Yeung, N. (2013). On the relationship between anxiety and error monitoring: A meta-analysis and conceptual framework. Retrieved from https://books.google.com/books?hl=en&lr=&id=TIWMCgAAQBAJ&oi=fnd&pg=PA40&dq=moran+moser+anxiety+review+2013&ots=lI_94R2AFf&sig=AlE6Zh6X1CxwxYPqHjuAKi5W0A4
  50. Nigg, J. T. (2017). Annual research review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, 58(4), 361–383.CrossRefGoogle Scholar
  51. Overbeek, T. J., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components of error processing: On the functional significance of the Pe Vis-à-Vis the ERN/ne. Journal of Psychophysiology, 19(4), 319–329.CrossRefGoogle Scholar
  52. Pérez-Edgar, K., Bar-Haim, Y., McDermott, J. M., Chronis-Tuscano, A., Pine, D. S., & Fox, N. A. (2010). Attention biases to threat and behavioral inhibition in early childhood shape adolescent social withdrawal. Emotion, 10(3), 349–357. https://doi.org/10.1037/a0018486 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 73–89. https://doi.org/10.1146/annurev-neuro-062111-150525 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Purcell, B. A., & Kiani, R. (2016). Neural mechanisms of post-error adjustments of decision policy in parietal cortex. Neuron, 89(3), 658–671. https://doi.org/10.1016/j.neuron.2015.12.027 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rapee, R. M., & Heimberg, R. G. (1997). A cognitive-behavioral model of anxiety in social phobia. Behaviour Research and Therapy, 35(8), 741–756. https://doi.org/10.1016/S0005-7967(97)00022-3 CrossRefPubMedGoogle Scholar
  56. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443–447. https://doi.org/10.1126/science.1100301 CrossRefPubMedGoogle Scholar
  57. Roberts, D. M., Fedota, J. R., Buzzell, G. A., Parasuraman, R., & McDonald, C. G. (2014). Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process. Journal of Cognitive Neuroscience, 26(8), 1615–1628. https://doi.org/10.1162/jocn_a_00569 CrossRefPubMedGoogle Scholar
  58. Rothbart, M. K. (1981). Measurement of temperament in infancy. Child Development, 52, 569–578.CrossRefGoogle Scholar
  59. Rothbart, M. K., & Bates, J. E. (2006). Temperament. In N. Eisenberg (Ed.), Handbook of child psychology. New York, NY: Wiley Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/9780470147658.chpsy0303/full Google Scholar
  60. Schröger, E. (1993). Event-related potentials to auditory stimuli following transient shifts of spatial attention in a go/Nogo task. Biological Psychology, 36(3), 183–207. https://doi.org/10.1016/0301-0511(93)90017-3 CrossRefPubMedGoogle Scholar
  61. Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: Adult amygdalar response to novelty. Science, 300(5627), 1952–1953. https://doi.org/10.1126/science.1083703 CrossRefGoogle Scholar
  62. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. https://doi.org/10.1016/j.neuron.2013.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Steinhauser, M., & Yeung, N. (2010). Decision processes in human performance monitoring. Journal of Neuroscience, 30(46), 15643–15653.CrossRefGoogle Scholar
  64. Thorell, L. B., Bohlin, G., & Rydell, A.-M. (2004). Two types of inhibitory control: Predictive relations to social functioning. International Journal of Behavioral Development, 28(3), 193–203. https://doi.org/10.1080/01650250344000389 CrossRefGoogle Scholar
  65. Torpey, D. C., Hajcak, G., Kim, J., Kujawa, A. J., Dyson, M. W., Olino, T. M., & Klein, D. N. (2013). Error-related brain activity in young children: Associations with parental anxiety and child temperamental negative emotionality. Journal of Child Psychology and Psychiatry, 54(8), 854–862.CrossRefGoogle Scholar
  66. Troller-Renfree, S., Buzzell, G. A., Bowers, M., Salo, V., Forman-Alberti, A., Smith, E., … Fox, N. A. (2018). Development of inhibitory control during childhood and its relations to early temperament and later social anxiety. https://doi.org/10.31234/osf.io/tj4hn
  67. Troller-Renfree, S. V., Buzzell, G. A., Pine, D. S., Henderson, H., & Fox, N. A. (in press). Developmental consequences of not planning ahead: reduced proactive control moderates longitudinal relations between behavioral inhibition and anxiety. Journal of the American Academy of Child & Adolescent Psychiatry.Google Scholar
  68. Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. Physiological Reviews, 94(1), 35–79. https://doi.org/10.1152/physrev.00041.2012 CrossRefPubMedGoogle Scholar
  69. White, L. K., McDermott, J. M., Degnan, K. A., Henderson, H. A., & Fox, N. A. (2011). Behavioral inhibition and anxiety: The moderating roles of inhibitory control and attention shifting. Journal of Abnormal Child Psychology, 39(5), 735–747.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Human Development & Quantitative MethodologyUniversity of Maryland – College ParkCollege ParkUSA
  2. 2.Department of Human Development and Quantitative MethodologyUniversity of MarylandCollege ParkUSA

Personalised recommendations