Skip to main content

Stem Cells for Nerve and Muscle Repair: Harnessing Developmental Dynamics in Therapeutics

  • Chapter
  • First Online:
Stem Cells for Cancer and Genetic Disease Treatment

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 648 Accesses

Abstract

Complexity, developmental diversification, structure-function plasticity and their importance in maintenance and perpetuation of biological fitness highlight the seminal role played by the nervous system and its accessory organs in the evolution of life and societal complexity. Equally complex are the diseases and disorders of the nervous system affecting sensory, motor, and intellectual faculties of humans. While therapeutic options for neuronal disorders have to deal with the BBB, “one-size-fits-all” paradigm does not work in therapeutics given the complex biochemical diversity of various neuronal cell types and their developmental origin. In contrast to classical therapeutics that have not evolved a cure for any major disorder, stem cell technology has generated both hype and hope. While replenishing lost neurons responsible for memory disorders would not bring back old memory, no technology is available to replace a lost motoneuron either by enticing the stem cell-derived neuron to extend its axon in the direction towards its target or directly transplanting a giant neuron from the spinal cord to the target. In spite of these limitations, there are great strides made in stem cell therapeutics for the diseases and disorders of neurons and muscle, be it the delivery mode bypassing the BBB, direct stem cell transplantation for replacement therapy or stem cell-mediated specific cargo delivery to affected neuronal or muscle cell types. Future of stem cell therapeutics for the diseases and disorders of the nerve and the muscle depends heavily on our understanding of developmental biology at the molecular level and the role played by model organisms in elucidating disease mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 02 April 2019

    An error in the production process unfortunately led to publication of this chapter prematurely, before incorporation of the final corrections. The version supplied here has been corrected and approved by the authors.

Abbreviations

ALS:

Amyotrophic lateral sclerosis

BBB:

Blood brain barrier

CD:

Cluster of differentiation

CNS:

Central nervous system

CRISPR:

Clustered regularly interspaced short palindromic repeats

DMD:

Duchenne muscular dystrophy

DNA:

Deoxyribonucleic acid

ENS:

Enteric nervous system

ES cells:

Embryonic stem cells

EVs:

Extracellular vesicles

HRT:

Hormone replacement therapies

IA:

Intra-arterial

iPSCs:

Induced pluripotent stem cell(s)

IV:

Intra-venous

LSDs:

Lysosomal storage disorders

MABs:

Mesoangioblasts

MCAO:

Middle cerebral artery occlusion

MDSCs:

Muscle-derived stem cells

MEFs:

Mouse embryonic fibroblasts

miRNAs:

microRNAs

MPCs:

Muscle progenitor cells

MSCs:

Mesenchymal stem cells

Myf5:

Myogenic factor 5

MyoD:

Myoblast determination protein

NMDs:

Neuromuscular diseases/disorders

NPCs:

Neural progenitor cells

NSCs:

Neural stem cells

NSPCs:

Neural stem/progenitor cells

PICs:

PW1+ interstitial cells

RICE:

Rest, ice/cold, compression and elevation

RNA:

Ribonucleic acid

RNAi:

RNA interference

SMA:

Spinal muscular atrophy

Sox:

Sry-related High Mobility Group (HMG) box

SP:

Side population

Sry:

Sex determining region Y (present on the Y chromosome)

SVZ:

Subventricular zone

3D:

Three-dimensional

References

  • Adams GB, Martin RP, Alley IR et al (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–243

    CAS  PubMed  Google Scholar 

  • Al Bekairy AM, Al Harbi S, Alkatheri AM et al (2014) Bacterial Meningitis: an update review. Afr J Pharm Pharmacol 8:469–478

    Google Scholar 

  • Alcendor DJ, Block FE III, Cliffel DE et al (2013) Neurovascular unit on a chip: implications for translational applications. Stem Cell Res Ther 4(Suppl 1):S18. https://doi.org/10.1186/scrt379

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9:617–628

    CAS  PubMed  Google Scholar 

  • Alexiades NG, Mckhann GM II (2017) Getting more skin in the game: using human neural stem cells transdifferentiated from fibroblasts to target malignant gliomas. Neurosurgery 81:N36–N37

    PubMed  Google Scholar 

  • Amiel J, Lyonnet S (2001) Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet 38:729–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603–615

    CAS  PubMed  Google Scholar 

  • Anderson DJ (1993) Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu Rev Neurosci 16:129–158

    CAS  PubMed  Google Scholar 

  • Anderson DJ (1997) Cellular and molecular biology of neural crest cell lineage determination. Trends Genet 13:276–280

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Haus DL, Hooshmand MJ et al (2011) Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 6:367–406

    PubMed  Google Scholar 

  • Appel B, Korzh V, Glasgow E et al (1995) Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development 121:4117–4125

    CAS  PubMed  Google Scholar 

  • Arnold HH, Braun T (2000) Genetics of muscle determination and development. Curr Top Dev Biol 48:129–164

    CAS  PubMed  Google Scholar 

  • Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218:237–245

    CAS  PubMed  Google Scholar 

  • Asa SL, Ezzat S (2002) The pathogenesis of pituitary tumours. Nat Rev Cancer 2:836–849

    CAS  PubMed  Google Scholar 

  • Babin PJ, Goizet C, Raldua D (2014) Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 118:36–58

    CAS  PubMed  Google Scholar 

  • Bago JR, Okolie O, Dumitru R et al (2017) Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci Transl Med 9(375):pii: eaah6510. https://doi.org/10.1126/scitranslmed.aah6510

    Article  CAS  Google Scholar 

  • Baj A, Colombo M, Headley JL et al (2015) Post-poliomyelitis syndrome as a possible viral disease. Int J Infect Dis 35:107–116

    PubMed  Google Scholar 

  • Bakshi A, Keck CA, Koshkin VS et al (2005) Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain. Brain Res 1065:8–19

    CAS  PubMed  Google Scholar 

  • Balyasnikova IV, Prasol MS, Ferguson SD et al (2014) Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Mol Ther 22:140–148

    CAS  PubMed  Google Scholar 

  • Bargiela D, Shanmugarajah P, Lo C et al (2015) Mitochondrial pathology in progressive cerebellar ataxia. Cerebellum Ataxias 2:16

    PubMed  PubMed Central  Google Scholar 

  • Barker RA, Cicchetti F, Neal MJ (2012) Neuroanatomy and neuroscience at a glance. Wiley-Blackwell, New Jersey

    Google Scholar 

  • Bartholow R (1982) Medical electricity: a practical treatise on the applications of electricity to medicine and surgery. Henry C. Lea’s Son & Co., Philadelphia

    Google Scholar 

  • Bartt R (2012) Acute bacterial and viral meningitis. Continuum Lifelong Learning Neurol 18:1255–1270

    Google Scholar 

  • Baser A, Skabkin M, Martin-Villalba A (2017) Neural stem cell activation and the role of protein synthesis. Brain Plast 3:27–41

    PubMed  PubMed Central  Google Scholar 

  • Bassuk AG, Zheng A, Li Y et al (2016) Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep 6:19969. https://doi.org/10.1038/srep19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behin A, Hoang-Xuan K, Carpentier AF et al (2003) Primary brain tumours in adults. Lancet 361:323–331

    PubMed  Google Scholar 

  • Belgacem YH, Hamilton AM, Shim S et al (2016) The many hats of Sonic Hedgehog signaling in nervous system development and disease. J Dev Biol 4:35. https://doi.org/10.3390/jdb4040035

    Article  CAS  PubMed Central  Google Scholar 

  • Ben-Hur T, Einstein O, Mizrachi-Kol R et al (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41:73–80

    PubMed  Google Scholar 

  • Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4. https://doi.org/10.1101/cshperspect.a008342

    PubMed  PubMed Central  Google Scholar 

  • Bergsland M, Ramskold D, Zaouter C et al (2011) Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 25:2453–2464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein JJ, Mary EB (1971) Axonal regeneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord. Exp Neurol 30:336–351

    CAS  PubMed  Google Scholar 

  • Bertini E, D’Amico A, Gualandi F et al (2011) Congenital muscular dystrophies: a brief review. Semin Pediatr Neurol 18:277–288

    PubMed  PubMed Central  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530

    CAS  PubMed  Google Scholar 

  • Birchmeier C, Brohman H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12:725–730

    CAS  PubMed  Google Scholar 

  • Bixby S, Kruger GM, Mosher JT et al (2002) Cellintrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35:643–656

    CAS  PubMed  Google Scholar 

  • Blair E, Watson L (2006) Epidemiology of cerebral palsy. Semin Fetal Neonatal Med 11:117–125

    PubMed  Google Scholar 

  • Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function. Cell 105:829–841

    CAS  PubMed  Google Scholar 

  • Blau HM, Cosgrove BD, Ho AT (2015) The central role of muscle stem cells in regenerative failure with aging. Nat Med 21:854–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blocklet D, Toungouz M, Berkenboom G et al (2006) Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells 24:333–336

    PubMed  Google Scholar 

  • Bossolasco P, Cova L, Levandis G et al (2012) Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson’s disease. Int J Nanomed 7:435–447

    CAS  Google Scholar 

  • Bottai D, Madaschi L, Di Giulio AM et al (2008) Viability-dependent promoting action of adult neural precursors in spinal cord injury. Mol Med 14:634–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyette LB, Tuan RS (2014) Adult stem cells and diseases of aging. J Clin Med 3:88–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brack AS, Munoz-Canoves P (2016) The ins and outs of muscle stem cell aging. Skelet Muscle 6:1

    PubMed  PubMed Central  Google Scholar 

  • Breunig JJ, Levy R, Antonuk CD et al (2015) Ets factors regulate neural stem cell depletion and gliogenesis in Ras pathway glioma. Cell Rep 12:258–271

    CAS  PubMed  Google Scholar 

  • Brzustowicz LM, Lehner T, Castilla LH et al (1990) Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature 344:540–541

    CAS  PubMed  Google Scholar 

  • Buckingham M (2001) Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11:440–448

    CAS  PubMed  Google Scholar 

  • Budnik V (1996) Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr Opin Neurobiol 6:858–867

    CAS  PubMed  Google Scholar 

  • Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296:183–190

    CAS  PubMed  Google Scholar 

  • Byrne GJ (2005) Pharmacological treatment of behavioural problems in dementia. Aust Prescr 28:67–70

    Google Scholar 

  • Carpio A, Romo ML, Parkhouse RM et al (2016) Parasitic diseases of the central nervous system: lessons for clinicians and policy makers. Expert Rev Neurother 16:401–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakkalakal JV, Jones KM, Basson MA et al (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chal J, Oginuma M, Al Tanoury Z et al (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33:962–969

    CAS  PubMed  Google Scholar 

  • Chan AW, Dominko T, Luetjens CM et al (2000) Clonal propagation of primate offspring by embryo splitting. Science 287:317–319

    CAS  PubMed  Google Scholar 

  • Chang Q, Balice-Gordon RJ (2000) Highwire, rpm-1, and futsch: balancing synaptic growth and stability. Neuron 26:287–290

    CAS  PubMed  Google Scholar 

  • Chau CL, Griffith JF (2005) Musculoskeletal infections: ultrasound appearances. Clin Radiol 60:149–159

    CAS  PubMed  Google Scholar 

  • Chen JN, Fishman MC (2000) Genetics of heart development. Trends Genet 16:383–388

    CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chien KR (2004) Stem cells: lost in translation. Nature 428:607–608

    CAS  PubMed  Google Scholar 

  • Chu K, Kim M, Jeong SW et al (2003) Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett 343:129–133

    CAS  PubMed  Google Scholar 

  • Chu-LaGraff Q, Schmid A, Leidel J et al (1995) huckebein specifies aspects of CNS precursor identity required for motorneuron axon pathfinding. Neuron 15:1041–1051

    CAS  PubMed  Google Scholar 

  • Cockburn N, Pradhan A, Taing MW et al (2017) Oral health impacts of medications used to treat mental illness. J Affect Disord 223:184–193

    CAS  PubMed  Google Scholar 

  • Collins CA, Olsen I, Zammit PS et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    CAS  PubMed  Google Scholar 

  • Cooke MJ, Wang Y, Morshead CM et al (2011) Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials 32:5688–5697

    CAS  PubMed  Google Scholar 

  • Coppede F, Mancuso M, Siciliano G et al (2006) Genes and the environment in neurodegeneration. Biosci Rep 26:341–367

    CAS  PubMed  Google Scholar 

  • Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    CAS  PubMed  Google Scholar 

  • Corti S, Strazzer S, Del Bo R et al (2002) A subpopulation of murine bone marrow cells fully differentiates along the myogenic pathway and participates in muscle repair in the mdx dystrophic mouse. Exp Cell Res 277:74–85

    CAS  PubMed  Google Scholar 

  • Corti S, Nizzardo M, Nardini M et al (2008) Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 118:3316–3330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corti S, Nizzardo M, Nardini M et al (2010) Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain 133:465–481

    PubMed  Google Scholar 

  • Crum-Cianflone NF (2008) Bacterial, fungal, parasitic, and viral myositis. Clin Microbiol Rev 21:473–494

    PubMed  PubMed Central  Google Scholar 

  • Dahlke MH, Lauth OS, Jager MD et al (2002) In vivo depletion of hematopoietic stem cells in the rat by an anti-CD45 (RT7) antibody. Blood 99:3566–3572

    CAS  PubMed  Google Scholar 

  • Dahmann C, Oates AC, Brand M (2011) Boundary formation and maintenance in tissue development. Nat Rev Genet 12:43–55

    CAS  PubMed  Google Scholar 

  • Daniels SK (2006) Neurological disorders affecting oral, pharyngeal swallowing. GI Motility Online. https://doi.org/10.1038/gimo34

  • Danielyan L, Schäfer R, von Ameln-Mayerhofer A et al (2009) Intranasal delivery of cells to the brain. Eur J Cell Biol 88:315–324

    CAS  PubMed  Google Scholar 

  • Danielyan L, Schäfer R, von Ameln-Mayerhofer A et al (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14:3–16

    CAS  PubMed  Google Scholar 

  • Dasen JS, Jessell TM (2009) Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200

    CAS  PubMed  Google Scholar 

  • Day SJ, Lawrence PA (2000) Measuring dimensions: the regulation of size and shape. Development 127:2977–2987

    CAS  PubMed  Google Scholar 

  • de Bakker E, Van Ryssen B, De Schauwer C et al (2013) Canine mesenchymal stem cells: state of the art, perspectives as therapy for dogs and as a model for man. Vet Q 33:225–233

    PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Vandenabeele F et al (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160:909–918

    PubMed  PubMed Central  Google Scholar 

  • De Los Angeles A, Ferrari F, Xi R et al (2015) Hallmarks of pluripotency. Nature 525:469–478

    PubMed  Google Scholar 

  • Delbeuck X, Van der Linden M, Collette F (2003) Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev 13:79–92

    CAS  PubMed  Google Scholar 

  • Dellavalle A, Maroli G, Covarello D et al (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. https://doi.org/10.1038/ncomms1508

    Article  CAS  PubMed  Google Scholar 

  • Deutsch G, Jung J, Zheng M et al (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881

    CAS  PubMed  Google Scholar 

  • Di Bonito M, Glover JC, Studer M (2013) Hox genes and region-specific sensorimotor circuit formation in the hindbrain and spinal cord. Dev Dyn 242:1348–1368

    PubMed  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty JT, Lenhart KC, Cameron MV et al (2011) Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1. J Biol Chem 286:25903–25921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dun XP, Parkinson DB (2017) Role of Netrin-1 signaling in nerve regeneration. Int J Mol Sci 18:491. https://doi.org/10.3390/ijms18030491

    Article  CAS  PubMed Central  Google Scholar 

  • Duncan T, Valenzuela M (2017) Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther 8:111

    PubMed  PubMed Central  Google Scholar 

  • Dyck PJ, Kratz KM, Karnes JL et al (1993) The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43:817–824

    CAS  PubMed  Google Scholar 

  • Eade KT, Fancher HA, Ridyard MS (2012) Developmental transcriptional networks are required to maintain neuronal subtype identity in the mature nervous system. PLoS Genet 8:e1002501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert AD, Svendsen CN (2010) Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov 9:367–372

    CAS  PubMed  Google Scholar 

  • Edens BM, Ajroud-Driss S, Ma L et al (2015) Molecular mechanisms and animal models of spinal muscular atrophy. Biochim Biophys Acta 1852:685–692

    CAS  PubMed  Google Scholar 

  • Egawa N, Kitaoka S, Tsukita K et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104. https://doi.org/10.1126/scitranslmed.3004052

    Article  CAS  PubMed  Google Scholar 

  • Engel AG, Shen XM, Selcen D et al (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14:420–434

    PubMed  PubMed Central  Google Scholar 

  • Engesser-Cesar C, Anderson AJ, Basso DM et al (2005) Voluntary wheel running improves recovery from a moderate spinal cord injury. J Neurotrauma 22:157–171

    PubMed  Google Scholar 

  • Enns GM, Huhn SL (2008) Central nervous system therapy for lysosomal storage disorders. Neurosurg Focus 24:E12

    PubMed  Google Scholar 

  • Erichsen AK, Koht J, Stray-Pedersen A et al (2009) Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain 132:1577–1588

    PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    CAS  PubMed  Google Scholar 

  • Fan HC, Ho LI, Chi CS et al (2014) Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 23:441–458

    PubMed  Google Scholar 

  • Farinazzo A, Turano E, Marconi S et al (2015) Murine adipose-derived mesenchymal stromal cell vesicles: in vitro clues for neuroprotective and neuroregenerative approaches. Cytotherapy 17:571–578

    CAS  PubMed  Google Scholar 

  • Feldkotter M, Schwarzer V, Wirth R et al (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368

    CAS  PubMed  Google Scholar 

  • Finsterer J (2005) Mitochondrial neuropathy. Clin Neurol Neurosurg 107:181–186

    PubMed  Google Scholar 

  • Finsterer J (2011) Inherited mitochondrial neuropathies. J Neurol Sci 304:9–16

    CAS  PubMed  Google Scholar 

  • Finsterer J, Scorza FA (2017) Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival. Epilepsy Res 136:5–11

    CAS  PubMed  Google Scholar 

  • Finsterer J, Zarrouk-Mahjoub S (2016) Treatment of muscle weakness in neuromuscular disorders. Expert Rev Neurother 16:1383–1395

    CAS  PubMed  Google Scholar 

  • Fischbach KF, Heisenberg M (1981) Structural brain mutant of Drosophila melanogaster with reduced cell numbers in the medulla cortex and with normal optomotor yaw response. Proc Natl Acad Sci U S A 78:1105–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortier LA, Travis AJ (2011) Stem cells in veterinary medicine. Stem Cell Res Ther 2:9

    PubMed  PubMed Central  Google Scholar 

  • Franco B, Bogdanik L, Bobinnec Y et al (2004) Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. J Neurosci 24:6573–6577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frisbie DD, Smith RK (2010) Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine Vet J 42:86–89

    CAS  PubMed  Google Scholar 

  • Fujita R, Tamai K, Aikawa E et al (2015) Endogenous mesenchymal stromal cells in bone marrow are required to preserve muscle function in mdx mice. Stem Cells 33:962–975

    CAS  PubMed  Google Scholar 

  • Galli R, Borello U, Gritti A et al (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991

    CAS  PubMed  Google Scholar 

  • Gariepy CE (2004) Developmental disorders of the enteric nervous system: genetic and molecular bases. J Pediatr Gastroenterol Nutr 39:5–11

    PubMed  Google Scholar 

  • Garne E, Dolk H, Krageloh-Mann I et al (2008) Cerebral palsy and congenital malformations. Eur J Paediatr Neurol 12:82–88

    PubMed  Google Scholar 

  • Genova E, Pelin M, Sasaki K et al (2018) Induced pluripotent stem cells as a model for therapy personalization of pediatric patients: disease modeling and drug adverse effects prevention. Curr Med Chem 25(24):2826–2839. https://doi.org/10.2174/0929867324666170804150131

    Article  CAS  PubMed  Google Scholar 

  • Gerlinger M, Rowan AJ, Horswell S (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gershon MD, Ratcliffe EM (2004) Developmental biology of the enteric nervous system: pathogenesis of Hirschsprung’s disease and other congenital dysmotilities. Semin Pediatr Surg 13:224–235

    PubMed  PubMed Central  Google Scholar 

  • Goldman SA (2016) Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell 18:174–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves MA, de Vries AA, Holkers M et al (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet 15:213–221

    PubMed  Google Scholar 

  • Grill R, Murai K, Blesch A et al (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kulhara P (2010) What is schizophrenia: a neurodevelopmental or neurodegenerative disorder or a combination of both? A critical analysis. Indian J Psychiatry 52:21–27

    PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Nibeyro SD (2011) Commercial cell-based therapies for musculoskeletal injuries in horses. Vet Clin North Am Equine Pract 27:363–371

    PubMed  Google Scholar 

  • Hall MN, Hall JK, Cadwallader AB et al (2017) Transplantation of skeletal muscle stem cells. Methods Mol Biol 1556:237–244

    PubMed  Google Scholar 

  • Hamid S, Ray H (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17:1256–1269

    PubMed  PubMed Central  Google Scholar 

  • Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079

    CAS  PubMed  Google Scholar 

  • Hassani A, Horvath R, Chinnery PF (2010) Mitochondrial myopathies: developments in treatment. Curr Opin Neurol 23:459–465

    CAS  PubMed  Google Scholar 

  • Hatten ME, Kettenmann H, Ransom BR (1991) Glial cell lineage. Glia 4:124–243

    Google Scholar 

  • Heilker R, Traub S, Reinhardt P et al (2014) iPS cell derived neuronal cells for drug discovery. Trends Pharmacol Sci 35:510–519

    CAS  PubMed  Google Scholar 

  • Hermann A, Storch A (2013) Induced neural stem cells (iNSCs) in neurodegenerative diseases. J Neural Transm 120(Suppl 1):S19–S25

    PubMed  Google Scholar 

  • Hermann A, Gastl R, Liebau S et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117:4411–4422

    CAS  PubMed  Google Scholar 

  • Hermann A, Maisel M, Wegner F et al (2006a) Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons. Stem Cells 24:949–964

    CAS  PubMed  Google Scholar 

  • Hermann A, Maisel M, Storch A (2006b) Epigenetic conversion of human adult bone mesodermal stromal cells into neuroectodermal cell types for replacement therapy of neurodegenerative disorders. Expert Opin Biol Ther 6:653–670

    CAS  PubMed  Google Scholar 

  • Hessinger C, Technau GM, Rogulja-Ortmann A (2017) The Drosophila Hox gene Ultrabithorax acts in both muscles and motoneurons to orchestrate formation of specific neuromuscular connections. Development 144:139–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiemer SE, Varelas X (2013) Stem cell regulation by the Hippo pathway. Biochim Biophys Acta 1830:2323–2334

    CAS  PubMed  Google Scholar 

  • Hillger JM, Lieuw WL, Heitman LH et al (2017) Label-free technology and patient cells: from early drug development to precision medicine. Drug Discov Today 22:1808–1815

    CAS  PubMed  Google Scholar 

  • Hilt RJ, Chaudhari M, Bell JF et al (2014) Side effects from use of one or more psychiatric medications in a population-based sample of children and adolescents. J Child Adolesc Psychopharmacol 24:83–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch NP (2007) Neuromuscular junction in health and disease. Br J Anaesth 99:132–138

    CAS  PubMed  Google Scholar 

  • Hodgson B, Mafi R, Mafi P et al (2018) The regulation of differentiation of mesenchymal stem-cells into skeletal muscle: a look at signalling molecules involved in myogenesis. Curr Stem Cell Res Ther 13(5):384–407. https://doi.org/10.2174/1574888X11666170907113151

    Article  CAS  PubMed  Google Scholar 

  • Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97:6242–6244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horner PJ, Fred HG (2000) Regenerating the damaged central nervous system. Nature 407:963–970

    CAS  PubMed  Google Scholar 

  • Hou XQ, Wang L, Wang FG et al (2017) Combination of RNA interference and stem cells for treatment of central nervous system diseases. Genes (Basel) 8:135. https://doi.org/10.3390/genes8050135

    Article  CAS  Google Scholar 

  • Hryhorowicz S, Walczak M, Zakerska-Banaszak O et al (2018) Pharmacogenetics of cannabinoids. Eur J Drug Metab Pharmacokinet 43(1):1–12. https://doi.org/10.1007/s13318-017-0416-z

    Article  CAS  PubMed  Google Scholar 

  • Hu BY, Weick JP, Yu J, Ma LX et al (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107:4335–4340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HI, Shih R (2015) Neurotropic enterovirus infections in the central nervous system. Viruses 7:6051–6066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibi D, de la Feunte Revenga M, Kezunovic N et al (2017) Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects. Nat Neurosci 20:1247–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichim TE, Solano F, Glenn E et al (2007) Stem cell therapy for autism. J Transl Med 5:30

    PubMed  PubMed Central  Google Scholar 

  • Imitola J, Raddassi K, Park KI et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101:18117–18122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiuchi T, Torres-Padilla ME (2013) Towards an understanding of the regulatory mechanisms of totipotency. Curr Opin Genet Dev 23:512–518

    CAS  PubMed  Google Scholar 

  • Islam MN, Das SR, Emin MT et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JS, Golding JP, Chapon C et al (2010) Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 1:17. https://doi.org/10.1186/scrt17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger J, Martinez-Arias A (2009) Getting the measure of positional information. PLoS Biol 7:e1000081

    PubMed Central  Google Scholar 

  • Jang J, Yoo JE, Lee JA et al (2012) Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp Mol Med 44:202–213

    CAS  PubMed  Google Scholar 

  • Jarmalaviciute A, Tunaitis V, Pivoraite U et al (2015) Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 17:932–939

    CAS  PubMed  Google Scholar 

  • Jarvinen TA, Järvinen TL, Kaariainen M et al (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764

    PubMed  Google Scholar 

  • Jarvinen TA, Jarvinen TL, Kaariainen M et al (2007) Muscle injuries: optimizing recovery. Best Pract Res Clin Rheumatol 21:317–331

    PubMed  Google Scholar 

  • Jarvinen TA, Jarvinen M, Kalimo H (2014) Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J 3:337–345

    PubMed  PubMed Central  Google Scholar 

  • Jarvis S, Glinianaia SV, Torrioli MG et al (2003) Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet 362:1106–1111

    PubMed  Google Scholar 

  • Jarvis S, Glinianaia SV, Blair E (2006) Cerebral palsy and intrauterine growth. Clin Perinatal 33:285–300

    Google Scholar 

  • Javitt DC, Spencer KM, Thaker GK et al (2008) Neurophysiological biomarkers for drug development in schizophrenia. Nature Rev Drug Discov 7:68–83

    CAS  Google Scholar 

  • Jerath NU, Shy ME (2015) Hereditary motor and sensory neuropathies: understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta 1852:667–678

    CAS  PubMed  Google Scholar 

  • Ji JF, He BP, Dheen ST et al (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427

    CAS  PubMed  Google Scholar 

  • Jiang D, Gao F, Zhang Y et al (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis 7:e2467. https://doi.org/10.1038/cddis.2016.358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RT (1984) Slow viral infections of the nervous system. J Infect Dis Antimicrob Agents 1:85–89

    Google Scholar 

  • Johnson BE, Mazor T, Hong C (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193

    CAS  PubMed  Google Scholar 

  • Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21

    CAS  PubMed  Google Scholar 

  • Joo WJ, Sweeney LB, Liang L et al (2013) Linking cell fate, trajectory choice, and target selection: genetic analysis of Sema-2b in olfactory axon targeting. Neuron 78:673–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89

    CAS  PubMed  Google Scholar 

  • Jubelt B (1992) Motor neuron diseases and viruses: poliovirus, retroviruses, and lymphomas. Curr Opin Neurol Neurosurg 5:655–658

    CAS  PubMed  Google Scholar 

  • Jubelt B, Cashman NR (1987) Neurological manifestations of the post-polio syndrome. Crit Rev Neurobiol 3:199–220

    CAS  PubMed  Google Scholar 

  • Jubelt B, Drucker J (1999) Poliomyelitis and the post-polio syndrome. In: Younger DS (ed) Motor disorders. Williams & Wilkins, Philadelphia, pp 381–395

    Google Scholar 

  • Kabashi E, Brustein E, Champagne N et al (2011) Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta 1812:335–345

    CAS  PubMed  Google Scholar 

  • Kallur T, Darsalia V, Lindvall O et al (2006) Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res 84:1630–1644

    CAS  PubMed  Google Scholar 

  • Kang JF, Tang BS, Guo JF (2016a) The progress of induced pluripotent stem cells as models of Parkinson’s disease. Stem Cells Int 2016:4126214. https://doi.org/10.1155/2016/4126214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JM, Yeon BK, Cho SJ et al (2016b) Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J Alzheimers Dis 54:879–889

    PubMed  Google Scholar 

  • Kao HT, Ryoo K, Lin A et al (2017) Synapsins regulate brain-derived neurotrophic factor-mediated synaptic potentiation and axon elongation by acting on membrane rafts. Eur J Neurosci 45:1085–1101

    PubMed  PubMed Central  Google Scholar 

  • Katsuda T, Tsuchiya R, Kosaka N et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197

    PubMed  PubMed Central  Google Scholar 

  • Keshishian H, Chiba A (1993) Neuromuscular development in Drosophila: insights from single neurons and single genes. Trends Neurosci 16:278–283

    CAS  PubMed  Google Scholar 

  • Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    CAS  PubMed  Google Scholar 

  • Kim YJ, Lee G (2013) Candidate ALS therapeutics motor toward “in vitro clinical trials”. Cell Stem Cell 12:633–634

    CAS  PubMed  Google Scholar 

  • Kim GM, Xu J, Xu J et al (2001) Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci 21:6617–6625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Cooke MJ, Shoichet MS (2012) Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotech 30:55–63

    CAS  Google Scholar 

  • Kley RA, Tarnopolsky MA, Vorgerd M (2008) Creatine treatment in muscle disorders: a meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry 79:366–367

    CAS  PubMed  Google Scholar 

  • Kmet M, Guo C, Edmondson C et al (2013) Directed differentiation of human embryonic stem cells into corticofugal neurons uncovers heterogeneous Fezf2-expressing subpopulations. PLoS One 8:e67292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko HC, Gelb BD (2014) Concise review: drug discovery in the age of the induced pluripotent stem cell. Stem Cells Transl Med 3:500–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kokontis L, Gutmann L (2000) Current treatment of neuromuscular diseases. Arch Neurol 57:939–943

    CAS  PubMed  Google Scholar 

  • Koon AC, Chan HYE (2017) Drosophila melanogaster as a model organism to study RNA toxicity of repeat expansion-associated neurodegenerative and neuromuscular diseases. Front Cell Neurosci 11:1–22

    Google Scholar 

  • Koyuncu OO, Hogue IB, Enquist LW (2013) Virus infections in the nervous system. Cell Host Microbe 13:379–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells-a critical review. APMIS 113:831–844

    PubMed  Google Scholar 

  • Kuzdas-Wood D, Stefanova N, Jellinger KA et al (2014) Towards translational therapies for multiple system atrophy. Prog Neurobiol 118:19–35

    PubMed  PubMed Central  Google Scholar 

  • Lacorazza HD, Flax JD, Snyder EY et al (1996) Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2:424–429

    CAS  PubMed  Google Scholar 

  • Lai RC, Yeo RW, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88

    CAS  PubMed  Google Scholar 

  • Laing NG (2012) Genetics of neuromuscular disorders. Crit Rev Clin Lab Sci 49:33–48

    CAS  PubMed  Google Scholar 

  • Lake JI, Heuckeroth RO (2013) Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 305:G1–G24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lala-Tabbert N, Fu D, Wiper-Bergeron N (2016) Induction of CCAAT/Enhancer-Binding protein beta expression with the phosphodiesterase inhibitor Isobutylmethylxanthine improves myoblast engraftment into dystrophic muscle. Stem Cells Transl Med 5:500–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamfers M, Idema S, van Milligen F et al (2009) Homing properties of adipose-derived stem cells to intracerebral glioma and the effects of adenovirus infection. Cancer Lett 274:78–87

    CAS  PubMed  Google Scholar 

  • Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114:1150–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32:795–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange W (1975) Cell number and cell density in the cerebellar cortex of man and other mammals. Cell Tiss Res 157:115–124

    CAS  Google Scholar 

  • Lara-Velazquez M, Akinduroa OO, Reimera R et al (2017) Stem cell therapy and its potential role in pituitary disorders. Neuroendocrinology 24:1–9

    Google Scholar 

  • Lax NZ, Hepplewhite PD, Reeve AK et al (2012) Cerebellar ataxia in patients with mitochondrial DNA disease: a molecular clinicopathological study. J Neuropathol Exp Neurol 71:148–161

    CAS  PubMed  Google Scholar 

  • Lax NZ, Gorman GS, Turnbull DM (2017) Central nervous system involvement in mitochondrial disease. Neuropathol Appl Neurobiol 43:102–118

    CAS  PubMed  Google Scholar 

  • Lee SK, Pfaff SL (2001) Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat Neurosci Suppl 4:1183–1191

    CAS  Google Scholar 

  • Lee J, Kuroda S, Shichinohe H et al (2003) Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology 23:169–180

    PubMed  Google Scholar 

  • Lee M, Liu T, Im W et al (2016) Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model. Eur J Neurosci 44:2114–2119

    PubMed  Google Scholar 

  • Lefebvre S, Bürglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    CAS  PubMed  Google Scholar 

  • Lefebvre S, Burlet P, Liu Q et al (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269

    CAS  PubMed  Google Scholar 

  • Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7

    PubMed  PubMed Central  Google Scholar 

  • Li XJ, Du ZW, Zarnowska ED et al (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221

    PubMed  Google Scholar 

  • Li Y, Wu WH, Hsu CW et al (2014) Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 22:1688–1697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Saucedo-Cuevas L, Regla-Nava JA et al (2016a) Zika virus infects neural progenitors in the adult mouse brain and alters proliferation cell. Stem Cell 19:593–598

    CAS  Google Scholar 

  • Li Y, Chan L, Nguyen HV, Tsang SH (2016b) Personalized medicine: cell and gene therapy based on patient-specific iPSC-derived retinal pigment epithelium cells. Adv Exp Med Biol 854:549–555

    CAS  PubMed  Google Scholar 

  • Lin H, Li Q, Lei Y (2017) An integrated miniature bioprocessing for personalized human induced pluripotent stem cell expansion and differentiation into neural stem cells. Sci Rep 7:40191. https://doi.org/10.1038/srep40191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Deng W (2016) Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Res 1638:30–41

    CAS  PubMed  Google Scholar 

  • Liu L, Rando TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193:257–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang SC (2010) Human stem cells as a model of motoneuron development and diseases. Ann N Y Acad Sci 1198:192–200

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Jiang D, Chi F et al (2012) The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell 3:291–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Weick JP, Liu H et al (2013) Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 31:440–447

    PubMed  PubMed Central  Google Scholar 

  • Lloyd TE, Taylor JP (2010) Flightless Flies: Drosophila models of neuromuscular disease. Ann N Y Acad Sci 1184:e1–e20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd-Lewis B, Harris OB, Watson CJ et al (2017) Mammary stem cells: premise, properties, and perspectives. Trends Cell Biol 27:556–567

    PubMed  Google Scholar 

  • Lnenicka GA, Keshishian H (2000) Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J Neurobiol 43:186–197

    CAS  PubMed  Google Scholar 

  • Lorant J, Saury C, Schleder C et al (2018) Skeletal muscle regenerative potential of human MuStem cells following transplantation into injured mice muscle. Mol Ther 26(2):618–633. https://doi.org/10.1016/j.ymthe.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  • Lorenzoni PJ, Scola RH, Kay CSK et al (2012) Congenital myasthenic syndrome: a brief review. Pediatric Neurol 46:141–148

    Google Scholar 

  • Lossing A, Moore M, Zuhl M (2017) Dance as a treatment for neurological disorders. Body Mov Dance Psychother 12:170–184

    Google Scholar 

  • Loy JH, Merry SN, Hetrick SE et al (2017) Atypical antipsychotics for disruptive behaviour disorders in children and youths. Cochrane Database of Syst Rev 9:CD008559. https://doi.org/10.1002/14651858.CD008559.pub2

    Article  Google Scholar 

  • Lu F, Zhang Y (2015) Cell totipotency: molecular features, induction, and maintenance. Natl Sci Rev 2:217–225

    CAS  PubMed  Google Scholar 

  • Lu A, Poddar M, Tang Y et al (2014) Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin2/2 mice. Hum Mol Genet 3:4786–4800

    Google Scholar 

  • Lyons MK (2011) Deep brain stimulation: current and future clinical applications. Mayo Clin Proc 86:662–672

    PubMed  PubMed Central  Google Scholar 

  • Ma H, Folmes CD, Wu J et al (2015) Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524:234–238

    CAS  PubMed  Google Scholar 

  • Mackay-Sim A (2013) Patient-derived stem cells: pathways to drug discovery for brain diseases. Front Cell Neurosci 7:29. https://doi.org/10.3389/fncel.2013.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maclean S, Khan WS, Malik AA et al (2012) The potential of stem cells in the treatment of skeletal muscle injury and disease. Stem Cells Int 2012. https://doi.org/10.1155/2012/282348

    Google Scholar 

  • Mafi R, Hindocha S, Mafi P et al (2011) Sources of adult mesenchymal stem cells applicable for musculoskeletal applications—a systematic review of the literature. Open Orthop J 5(Suppl 2):242–248

    PubMed  PubMed Central  Google Scholar 

  • Maherali N, Hochedlinger K (2008) Induced pluripotency of mouse and human somatic cells. Cold Spring Harb Symp Quant Biol 73:157–162

    CAS  PubMed  Google Scholar 

  • Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    CAS  PubMed  Google Scholar 

  • Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malone DA, Pandya MM (2006) Behavioral neurosurgery. Adv Neurol 99:241–247

    PubMed  Google Scholar 

  • Manzanares M, Rodriguez TA (2013) Development: Hippo signalling turns the embryo inside out. Curr Biol 23:R559–R561

    CAS  PubMed  Google Scholar 

  • Marano G, Traversi G, Romagnoli E (2011) Cardiologic side effects of psychotropic drugs. Am J Geriatr Cardiol 8:243–253

    CAS  Google Scholar 

  • Marder E (2002) Non-mammalian models for studying neural development and function. Nature 417:318–321

    CAS  PubMed  Google Scholar 

  • Maumus M, Jorgensen C, Noel D (2013) Mesenchymal stem cells in regenerative medicine applied to rheumatic disease: role of secretome and exosomes. Biochimie 95:2229–2234

    CAS  PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayberg HS, Lozano AM, Voon V (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660

    CAS  PubMed  Google Scholar 

  • McConnell SK (1995) The generation of neuronal diversity in the developing central nervous system. J Neurosci 15:6987–6998

    CAS  PubMed  PubMed Central  Google Scholar 

  • McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18:5354–5365

    CAS  PubMed  PubMed Central  Google Scholar 

  • McVey KA, Mink JA, Snapp IB et al (2012) Caenorhabditis elegans: an emerging model system for pesticide neurotoxicity. J Environ Anal Toxicol S4:003. https://doi.org/10.4172/2161-0525.S4-003

    Article  Google Scholar 

  • Meadow LA, Gell D, Broadie K et al (1994) The cell adhesion molecule, connectin, and the development of the Drosophila neuromuscular system. J Cell Sci 107:321–328

    Google Scholar 

  • Mendelsohn AR, Larrick JW (2015) Stem cell depletion by global disorganization of the H3K9me3 epigenetic marker in aging. Rejuvenation Res 18:371–375

    CAS  PubMed  Google Scholar 

  • Menon KP, Carrillo RA, Zinn K (2013) Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol 2:647–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger M, Caldwell C, Barlow AJ et al (2009a) Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 136:2214–2225

    CAS  PubMed  Google Scholar 

  • Metzger M, Bareiss PM, Danker T et al (2009b) Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology 137:2063–2073

    CAS  PubMed  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    CAS  PubMed  Google Scholar 

  • Mian MK, Campos M, Sheth S et al (2010) Deep brain stimulation for obsessive-compulsive disorder: past, present, and future. J Neurosurg 29:E10

    Google Scholar 

  • Mizuno H, Zuk PA, Zhu M et al (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109:199–209

    PubMed  Google Scholar 

  • Moavero R, Santarone ME, Galasso C et al (2017) Cognitive and behavioral effects of new antiepileptic drugs in pediatric epilepsy. Brain Dev 39:464–469

    PubMed  Google Scholar 

  • Moller AR (2001) Symptoms and signs caused by neural plasticity. Neurol Res 23:565–572

    CAS  PubMed  Google Scholar 

  • Montarras D, Morgan J, Collins C et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    CAS  PubMed  Google Scholar 

  • Moore XL, Lu J, Sun L et al (2004) Endothelial progenitor cells’ “homing” specificity to brain tumors. Gene Ther 1:811–818

    Google Scholar 

  • Morgani SM, Brickman JM (2014) The molecular underpinnings of totipotency. Philos Trans R Soc Lond B Biol Sci 369(1657):pii: 20130549. https://doi.org/10.1098/rstb.2013.0549

    Article  CAS  Google Scholar 

  • Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    CAS  PubMed  Google Scholar 

  • Morrison JI, Loof S, He P et al (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG et al (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    CAS  PubMed  Google Scholar 

  • Muench J, Hamer AM (2010) Adverse effects of antipsychotic medications. Am Fam Physician 81:617–622

    PubMed  Google Scholar 

  • Muntoni F, Brown S, Sewry C et al (2002) Muscle development genes: their relevance in neuromuscular disorders. Neuromuscul Disord 12:438–446

    PubMed  Google Scholar 

  • Namiki J, Kojima A, Tator CH (2009) Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17:1219–1231

    Google Scholar 

  • Narayanan K, Mishra S, Singh S et al (2017) Engineering concepts in stem cell research. Biotechnol J 12. https://doi.org/10.1002/biot.201700066

    Google Scholar 

  • Narita Y, Rijli FM (2009) Hox genes in neural patterning and circuit formation in the mouse hindbrain. Curr Top Dev Biol 88:139–167

    CAS  PubMed  Google Scholar 

  • Nathanson N (2008) The pathogenesis of poliomyelitis: what we don’t know. Adv Virus Res 71:1–50

    CAS  PubMed  Google Scholar 

  • Naya FJ, Olson E (1999) MEF2: a transcriptional target for signalling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11:683–688

    CAS  PubMed  Google Scholar 

  • Nelson CM (2009) Geometric control of tissue morphogenesis. Biochim Biophys Acta 1793:903–910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neupane M, Chang CC, Kiupel M et al (2008) Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A 14:1007–1015

    CAS  PubMed  Google Scholar 

  • Newgreen D, Young HM (2002a) Enteric nervous system: development and developmental disturbances—part 1. Pediatr Dev Pathol 5:224–247

    CAS  PubMed  Google Scholar 

  • Newgreen D, Young HM (2002b) Enteric nervous system: development and developmental disturbances—part 2. Pediatr Dev Pathol 5:329–349

    PubMed  Google Scholar 

  • Nicolson GL (2008) Chronic bacterial and viral infections in neurodegenerative and neurobehavioral diseases. Labmedicine 39:291–299

    Google Scholar 

  • Nieto MA (1996) Molecular biology of axon guidance. Neuron 17:1039–1048

    CAS  PubMed  Google Scholar 

  • Nishio Y, Koda M, Hashimoto M et al (2009) Deletion of macrophage migration inhibitory factor attenuates neuronal death and promotes functional recovery after compression-induced spinal cord injury in mice. Acta Neuropathol 117:321–328

    CAS  PubMed  Google Scholar 

  • Noyola DE, Jimenez-Capdeville ME, Demmler-Harrison GJ (2010) Central nervous system disorders in infants with congenital cytomegalovirus infection. Neurol Res 32:278–284

    PubMed  Google Scholar 

  • O’Kane CJ (2011) Drosophila as a model organism for the study of neuropsychiatric disorders. In: Hagan JJ (ed) Molecular and functional models in neuropsychiatry. Current topics in behavioral neurosciences, vol 7. Springer, Berlin, pp 37–60

    Google Scholar 

  • Obermair FJ, Schroter A, Thallmair M (2008) Endogenous neural progenitor cells as therapeutic target after spinal cord injury. Physiology 23:296–304

    PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    CAS  PubMed  Google Scholar 

  • Orbay H, Mizuno H (2013) Translational research in stem cell treatment of neuromuscular diseases. ISRN Stem Cells 2013:947329. https://doi.org/10.1155/2013/947329

    Article  CAS  Google Scholar 

  • Ottoboni L, Merlini A, Martino G (2017) Neural stem cell plasticity: advantages in therapy for the injured central nervous system. Front Cell Dev Biol 5:52

    PubMed  PubMed Central  Google Scholar 

  • Page RL, Malcuit C, Vilner L et al (2011) Restoration of skeletal muscle defects with adult human cells delivered on fibrin microthreads. Tissue Eng Part A 17:2629–2640

    CAS  PubMed  Google Scholar 

  • Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404

    CAS  PubMed  Google Scholar 

  • Pandya H, Shen MJ, Ichikawa DM et al (2017) Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 20:753–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pannerec A, Marazzi G, Sassoon D (2012) Stem cells in the hood: the skeletal muscle niche. Trends Mol Med 18:599–606

    CAS  PubMed  Google Scholar 

  • Pareyson D, Piscosquito G, Moroni I et al (2013) Peripheral neuropathy in mitochondrial disorders. Lancet Neurol 12:1011–1024

    CAS  PubMed  Google Scholar 

  • Parisi MA, Kapur RP (2000) Genetics of Hirschsprung disease. Curr Opin Pediatr 12:610–617

    CAS  PubMed  Google Scholar 

  • Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parr AM, Kulbatski I, Tator CH (2007) Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma 24:835–845

    PubMed  Google Scholar 

  • Patten SA, Armstrong GA, Lissouba A et al (2014) Fishing for causes and cures of motor neuron disorders. Dis Model Mech 7:799–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peerani R, Zandstra PW (2010) Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 120:60–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pendleton C, Li Q, Chesler DA et al (2013) Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS One 8:e58198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penzo-Mendez AI, Stanger BZ (2015) Organ-size regulation in mammals. Cold Spring Harb Perspect Biol 7:a019240

    PubMed  PubMed Central  Google Scholar 

  • Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113:5–10

    CAS  PubMed  Google Scholar 

  • Perry RL, Rudnick MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5:750–767

    Google Scholar 

  • Pfeffer G, Chinnery PF (2013) Diagnosis and treatment of mitochondrial myopathies. Ann Med 45:4–16

    CAS  PubMed  Google Scholar 

  • Philippidou P, Dasen JS (2013) Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80:12–34

    CAS  PubMed  Google Scholar 

  • Piccin D, Morshead CM (2010) Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 3:421–425

    PubMed  Google Scholar 

  • Pierret C, Morrison JA, Kirk MD (2008) Treatment of lysosomal storage disorders: Focus on the neuronal ceroid-lipofuscinoses. Acta Neurobiol Exp 68:429–442

    Google Scholar 

  • Pini V, Morgan JE, Muntoni F et al (2017) Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Curr Stem Cell Rep 3:137–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pisciotta A, Riccio M, Carnevale G et al (2015) Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 6:156

    PubMed  PubMed Central  Google Scholar 

  • Plantie E, Migocka-Patrzałek M, Daczewska M et al (2015) Model organisms in the fight against muscular dystrophy: lessons from Drosophila and zebrafish. Molecules 20:6237–6253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Platt FM, Lachmann RH (2009) Treating lysosomal storage disorders: current practice and future prospects. Biochim Biophys Acta 1793:737–745

    CAS  PubMed  Google Scholar 

  • Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    CAS  PubMed  Google Scholar 

  • Pluchino S, Gritti A, Blezer E et al (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66:343–354

    CAS  PubMed  Google Scholar 

  • Poe LB, Coleman LL, Mahmud F (1989) Congenital central nervous system anomalies. RadioGraphics 9:801–826

    CAS  PubMed  Google Scholar 

  • Price DL, Sisodia SS, Borchelt DR (1998) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079–1083

    CAS  PubMed  Google Scholar 

  • Prior TW (2010) Spinal muscular atrophy: a time for screening. Curr Opin Pediatr 22(6):696–702

    PubMed  Google Scholar 

  • Quigley HA, Addicks EM, Green WG (1982) Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 100:135–146

    CAS  PubMed  Google Scholar 

  • Rajput BS, Chakrabarti SK, Dongare VS et al (2015) Human umbilical cord mesenchymal stem cells in the treatment of Duchenne Muscular Dystrophy: safety and feasibility study in India. J Stem Cells 10:141–156

    CAS  PubMed  Google Scholar 

  • Rakic P (1985) Limits of neurogenesis in primates. Science 227:1054–1056

    CAS  PubMed  Google Scholar 

  • Ramer MS, John VP, Stephen BM (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403:312–316

    CAS  PubMed  Google Scholar 

  • Ramos A, Camargo FD (2012) The Hippo signaling pathway and stem cell biology. Trends Cell Biol 22:339–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo PA, Pavlou M, Loizidou M et al (2017) Elements of the niche for adult stem cell expansion. J Tissue Eng 8. https://doi.org/10.1177/2041731417725464

    Google Scholar 

  • Regal M, Paramo C, Sierra SM et al (2001) Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol 55:73

    Google Scholar 

  • Reif A, Fritzen S, Finger M et al (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    CAS  PubMed  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A et al (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    CAS  PubMed  Google Scholar 

  • Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23

    CAS  PubMed  Google Scholar 

  • Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohwedel J, Maltsev V, Bober E et al (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101

    CAS  PubMed  Google Scholar 

  • Rosengardten Y, McKenna T, Grochova D et al (2011) Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell 10:1011–1020

    CAS  PubMed  Google Scholar 

  • Ross CA, Tabrizi SJ (2010) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    Google Scholar 

  • Rossi CA, Flaibani M, Blaauw B et al (2011) In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J 25:2296–2304

    CAS  PubMed  Google Scholar 

  • Roux M, Zaffran S (2016) Hox genes in cardiovascular development and diseases. J Dev Biol 4:14

    PubMed Central  Google Scholar 

  • Ruff CA, Fehlings MG (2010) Neural stem cells in regenerative medicine: bridging the gap. Panminerva Med 52:125–147

    CAS  PubMed  Google Scholar 

  • Ruller CM, Tabor-Godwin JM, Van Deren Jr DA et al (2012) Neural stem cell depletion and CNS developmental defects after enteroviral infection. Am J Pathol 180:1107–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruven C, Li W, Li H et al (2017) Transplantation of embryonic spinal cord derived cells helps to prevent muscle atrophy after peripheral nerve injury. Int J Mol Sci 18:511. https://doi.org/10.3390/ijms18030511

    Article  CAS  PubMed Central  Google Scholar 

  • Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25

    CAS  PubMed  Google Scholar 

  • Salah-Mohellibi N, Millet G, André-Schmutz I et al (2006) Bone marrow transplantation attenuates the myopathic phenotype of a muscular mouse model of spinal muscular atrophy. Stem Cells 24:2723–2732

    CAS  PubMed  Google Scholar 

  • Salehi H, Amirpour N, Niapour A et al (2016) An overview of neural differentiation potential of human adipose derived stem cells. Stem Cell Rev 12:26–41

    CAS  Google Scholar 

  • Scaglia F, Wong LJ, Vladutiu GD et al (2015) Predominant cerebellar volume loss as a neuroradiologic feature of pediatric respiratory chain defects. Am J Neuroradiol 26:1675–1680

    Google Scholar 

  • Schappi MG, Staiano A, Milla PJ et al (2013) A practical guide for the diagnosis of primary enteric nervous system disorders. J Pediatr Gastroenterol Nutr 57:677–686

    CAS  PubMed  Google Scholar 

  • Schwalb JM, Hamani C (2008) The history and future of deep brain stimulation. Neurotherapeutics 5:3–13

    PubMed  PubMed Central  Google Scholar 

  • Schwank G, Basler K (2010) Regulation of organ growth by morphogen gradients. Cold Spring Harb Perspect Biol 2:a001669

    PubMed  PubMed Central  Google Scholar 

  • Schwartz MP, Hou Z, Propson NE et al (2015) Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci U S A 112:12516–12521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A et al (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    CAS  PubMed  Google Scholar 

  • Segraves RT (1988) Sexual side-effects of psychiatric drugs. Intl J Psychiatry Med 18:243–252

    CAS  Google Scholar 

  • Sharifi MS (2013) Treatment of neurological and psychiatric disorders with deep brain stimulation; raising hopes and future challenges. Basic Clin Neurosci 4:266–270

    PubMed  PubMed Central  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Biol 8:703–713

    CAS  Google Scholar 

  • She S, Wei Q, Kang B et al (2017) Cell cycle and pluripotency: convergence on octamer-binding transcription factor 4 (review). Mol Med Rep 16:6459–6466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty AK, Bates A (2016) Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer’s and Parkinson’s diseases. Brain Res 1638:74–87

    CAS  PubMed  Google Scholar 

  • Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes & Dev 20:1692–1708

    CAS  Google Scholar 

  • Shi Y, Kirwan P, Livesey FJ (2012a) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7:1836–1846

    CAS  PubMed  Google Scholar 

  • Shi Y, Kirwan P, Smith J et al (2012b) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15:477–486

    CAS  PubMed  Google Scholar 

  • Short CA, Suarez-Zayas EA, Gomez TM (2016) Cell adhesion and invasion mechanisms that guide developing axons. Curr Opin Neurobiol 39:77–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sieburth D, Ch’ng Q, Dybbs M et al (2005) Systematic analysis of genes required for synapse structure and function. Nature 436:510–517

    CAS  PubMed  Google Scholar 

  • Sierra A, Martin-Suáreza S, Valcarcel-Martin R et al (2015) Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal heurogenesis. Cell Stem Cell 16:488–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Signer RA, Morrison SJ (2013) Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12:152–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonen M, Pedersen V, Weinmann O et al (2003) Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38:201–211

    CAS  PubMed  Google Scholar 

  • Slack JM (2008) Origin of stem cells in organogenesis. Science 322:1498–1501

    CAS  PubMed  Google Scholar 

  • Smith RR, Shum-Siu A, Baltzley R et al (2006) Effects of swimming on functional recovery after incomplete spinal cord injury in rats. J Neurotrauma 23:908–919

    PubMed  Google Scholar 

  • Sohn J, Lu A, Tang Y et al (2015) Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet 24:3814–3829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solmi M, Murru A, Pacchiarotti I et al (2017) Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag 13:757–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa BR, Parreira RC, Fonseca EA et al (2014) Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications. Cytometry 85:43–77

    PubMed  Google Scholar 

  • Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104

    CAS  PubMed  Google Scholar 

  • Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226

    CAS  PubMed  Google Scholar 

  • Stanger BZ (2008) Organ size determination and the limits of regulation. Cell Cycle 7:318–324

    CAS  PubMed  Google Scholar 

  • Stewart AM, Braubach O, Spitsbergen J et al (2014) Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 37:264–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192

    PubMed  Google Scholar 

  • Swanson PA, McGavern DB (2015) Viral diseases of the central nervous system. Curr Opin Virol 11:44–54

    PubMed  PubMed Central  Google Scholar 

  • Tajbakhsh S (2005) Skeletal muscle stem and progenitor cells: reconciling genetics and lineage. Exp Cell Res 306:364–372

    CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  • Tamaki S, Eckert K, He D et al (2002) Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res 69:976–986

    CAS  PubMed  Google Scholar 

  • Taylor MV (2002) Muscle differentiation: how two cells become one. Curr Biol 12:R224–R228

    CAS  PubMed  Google Scholar 

  • Tedesco FS, Dellavalle A, Diaz-Manera J et al (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tedesco FS, Hoshiya H, D'Antona G et al (2011) Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med 3:96ra78. https://doi.org/10.1126/scitranslmed.3002342

    Article  CAS  PubMed  Google Scholar 

  • Terns RM, Terns MP (2014) CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet 30:111–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology axon guidance. Science 274:1123–1133

    CAS  PubMed  Google Scholar 

  • Tetzlaff W, Okon EB, Karimi-Abdolrezaee S et al (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28:1611–1682

    PubMed  PubMed Central  Google Scholar 

  • Thier M, Worsdorfer P, Lakes YB et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10:473–479

    CAS  PubMed  Google Scholar 

  • Thorley M, Malatras A, Duddy W et al (2015) Changes in communication between muscle stem cells and their environment with aging. J Neuromuscul Dis 2:205–217

    PubMed  PubMed Central  Google Scholar 

  • Tokuzawa Y, Kaiho E, Maruyama M et al (2003) Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23:2699–2708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrente Y, Camirand G, Pisati F et al (2003) Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. J Cell Biol 162:511–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrente Y, Gavina M, Belicchi M et al (2006) High-resolution X-ray microtomography for three-dimensional visualization of human stem cell muscle homing. FEBS Lett 580:5759–5764

    CAS  PubMed  Google Scholar 

  • Trent C, Tsung N, Horvitz HR (1983) Egg–laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tropepe V, Hitoshi S, Sirard C et al (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78

    CAS  PubMed  Google Scholar 

  • Tsuchida T, Ensini M, Morton SB et al (1994) Topographic organisation of embryonic motor neurons defined by expression of LIM Homeobox genes. Cell 79:957–970

    CAS  PubMed  Google Scholar 

  • Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    CAS  PubMed  Google Scholar 

  • Tueth MJ (1994) Emergencies caused by side effects of psychiatric medications. Am J Emerg Med 12:212–216

    CAS  PubMed  Google Scholar 

  • Turinetto V, Orlando L, Giachino C (2017) Induced pluripotent stem cells: advances in the quest for genetic stability during reprogramming process. Int J Mol Sci 18:1952. https://doi.org/10.3390/ijms18091952

    Article  CAS  PubMed Central  Google Scholar 

  • Tweedell KS (2017) The adaptability of somatic stem cells: a review. J Stem Cells Regen Med 13:3–13

    PubMed  PubMed Central  Google Scholar 

  • van der Knaap MS, Valk J (1988) Classification of congenital abnormalities of the CNS. Am J Neuroradiol 9:315–326

    PubMed  PubMed Central  Google Scholar 

  • van Velthoven CT, Sheldon RA, Kavelaars A et al (2013) Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 44:1426–1432

    PubMed  PubMed Central  Google Scholar 

  • Verity C, Firth H, ffrench-Constant C (2003) Congenital abnormalities of the central nervous system. J Neurol Neurosurg Psychiatry 74:i3–i8

    PubMed  PubMed Central  Google Scholar 

  • Villanova M, Bach JR (2015) Allogeneic mesenchymal stem cell therapy outcomes for three patients with spinal muscular atrophy type 1. Am J Phys Med Rehabil 94:410–415

    PubMed  Google Scholar 

  • Vincent A (2008) Autoimmune disorders of the neuromuscular junction. Neurol India 56:305–313

    PubMed  Google Scholar 

  • Vitale I, Manic G, De Maria R et al (2017) DNA damage in stem cells. Mol Cell 66:306–319

    CAS  PubMed  Google Scholar 

  • Wagers AJ (2012) The stem cell niche in regenerative medicine. Cell Stem Cell 10:362–369

    CAS  PubMed  Google Scholar 

  • Wang YX, Dumont NA, Rudnicki MA (2014) Muscle stem cells at a glance. J Cell Sci 127:4543–4548

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Yi F, Fu L et al (2017a) CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 8:365–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yu A, Yu FX (2017b) The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 8:349–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weisfeldt ML, Zieman SJ (2007) Advances in the prevention and treatment of cardiovascular disease. Health Aff 26:25–37

    Google Scholar 

  • Weiss S, Dunne C, Hewson J et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman IL (2004) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Google Scholar 

  • Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393–410

    CAS  PubMed  Google Scholar 

  • Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    CAS  PubMed  Google Scholar 

  • Wetts R, Herrup K (1982) Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res 250:358–362

    CAS  PubMed  Google Scholar 

  • Wetts R, Herrup K (1983) Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild–type mice. Dev Brain Res 10:41–44

    Google Scholar 

  • Wise CJ, Watt DJ, Jones GE (1996) Conversion of dermal fibroblasts to a myogenic lineage is induced by a soluble factor derived from myoblasts. J Cell Biochem 61:363–374

    CAS  PubMed  Google Scholar 

  • Wolpert L (1968) The French Flag problem: a contribution to the discussion on pattern development and regulation. In: Waddington CH (ed) Towards a theoretical biology. Edinburgh University Press, Edinburgh, pp 125–133

    Google Scholar 

  • Wong AH, Van Tol HH (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27:269–306

    PubMed  Google Scholar 

  • Woolf CJ, Salte M (2000) Neuronal plasticity: increasing the gain of pain. Science 288:1765–1768

    CAS  PubMed  Google Scholar 

  • Wu S, Li K, Yan Y et al (2013) Intranasal delivery of neural stem cells: a CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. J Clin Cell Immunol 4. https://doi.org/10.4172/2155-9899.1000142

  • Yaffe D (1968) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A 61:477–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Gao M, Ma J et al (2015) Transdifferentiation-induced neural stem cells promote recovery of middle cerebral artery stroke rats. PLoS One 10:e0137211. https://doi.org/10.1371/journal.pone.0137211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye JH, Houle JD (1997) Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 143:70–81

    CAS  PubMed  Google Scholar 

  • Younger DS (2004) Vasculitis of the nervous system. Curr Opin Neurol 17:317–336

    PubMed  Google Scholar 

  • Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun K, Wold B (1996) Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8:877–889

    CAS  PubMed  Google Scholar 

  • Yuyama K, Sun H, Usuki S et al (2015) A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide. FEBS Lett 589:84–88

    CAS  PubMed  Google Scholar 

  • Zelentsova K, Talmi Z, Abboud-Jarrous G et al (2017) Protein S regulates neural stem cell quiescence and neurogenesis. Stem Cells 35:679–693

    CAS  PubMed  Google Scholar 

  • Zett UK, Stuve O, Patejdl R (2012) Immune-mediated CNS diseases: a review on nosological classification and clinical features. Autoimmun Rev 11:167–173

    Google Scholar 

  • Zhang Y, Zhu Y, Li Y et al (2015) Long-term engraftment of myogenic progenitors from adipose-derived stem cells and muscle regeneration in dystrophic mice. Hum Mol Genet 24:6029–6040

    CAS  PubMed  Google Scholar 

  • Zhou JY, Zhang Z, Qian GS (2016) Mesenchymal stem cells to treat diabetic neuropathy: a long and strenuous way from bench to the clinic. Cell Death Discov 2:16055. https://doi.org/10.1038/cddiscovery.2016.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zueter AM, Zaiter A (2015) Infectious meningitis. Clin Microbiol Newsl 37:43–51

    Google Scholar 

Download references

Acknowledgements

Authors duly acknowledge the help and encouragement from Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasikumar, S., Bhan, A., Rajendra, T.K. (2018). Stem Cells for Nerve and Muscle Repair: Harnessing Developmental Dynamics in Therapeutics. In: Pham, P., El-Hashash, A. (eds) Stem Cells for Cancer and Genetic Disease Treatment. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-98065-2_10

Download citation

Publish with us

Policies and ethics