Skip to main content

Accelerated Corneal Cross-Linking

  • Chapter
  • First Online:
Controversies in the Management of Keratoconus

Abstract

Purpose: Corneal cross-linking (CXL) is a relatively new treatment that offers refractive stability in patients with corneal ectatic disorders. The conventional Dresden protocol has been firstly described, and its effectiveness has been demonstrated by several clinical trials. However, the long UVA exposure required, is considered time-consuming and a drawback of the procedure. In order to overcome this issue, the accelerated crosslinking (ACXL) has been lately developed. The purpose of this chapter is to compare the ACXL protocols and the conventional Dresden protocol in terms of visual acuity, keratometric and topographic parameters.

Findings: ACXL protocols seem to be a valid alternative to the conventional protocol; safety and effectiveness of the procedures has been shown by many studies but indirect measurements, such as demarcation line depth, do not always confirm equivalence of protocols. Nevertheless the high fluency procedures offer the advantage of reducing the patient discomfort, achieving a more effective time management, and avoiding the excessive corneal dehydration and thinning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Remé C, Reinboth J, Clausen M, Hafezi F. Light damage revisited: converging evidence, diverging views? Graefes Arch Clin Exp Ophthalmol. 1996;234(1):2–11.

    Article  Google Scholar 

  2. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.

    Article  CAS  Google Scholar 

  3. Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T. Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2007;33(12):2035–40.

    Article  Google Scholar 

  4. Caporossi A, Mazzotta C, Baiocchi S. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena Eye Cross Study. Am J Ophthalmol. 2010;149(4):585–93.

    Article  CAS  Google Scholar 

  5. Vinciguerra P, Albe E, Trazza S. Intraoperative and postoperative effects of corneal collagen cross-linking on progressive keratoconus. Arch Ophthalmol. 2009;127(10):1258–65.

    Article  Google Scholar 

  6. Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVAriboflavin cross-linking of the cornea. Cornea. 2007;26(4):385–9.

    Article  Google Scholar 

  7. Kymionis GD, Kontadakis GA, Hashemi KK. Accelerated versus conventional corneal crosslinking for refractive instability: an update. Curr Opin Ophthalmol. 2017;28(4):343–7.

    Article  Google Scholar 

  8. Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Surv Ophthalmol. 2015;60(6):509–23.

    Article  Google Scholar 

  9. Bunsen RW, Roscoe HE. Photochemical researches – part V. On the measurement of the chemical action of direct and diffuse sunlight. Proc R Soc Lond. 1862;12:306–12.

    Google Scholar 

  10. Shetty R, Pahuja NK, Nuijts RM, et al. Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol. 2015;160:243–9.

    Article  Google Scholar 

  11. Wernli J, Schumacher S, Spoerl E, Mrochen M. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54:1176–80.

    Article  Google Scholar 

  12. Akkaya TS, Toker E. Changes in corneal density after accelerated corneal collagen cross-linking with different irradiation intensities and energy exposures: 1-year follow-up. Cornea. 2017;36(11):1331–5.

    Article  Google Scholar 

  13. Kanellopoulos AJ. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97–101.

    Article  Google Scholar 

  14. Elbaz U, Shen C, Lichtinger A, et al. Accelerated (9-mW/cm2) corneal collagen crosslinking for keratoconus-A 1-year follow-up. Cornea. 2014;33:769–73.

    Article  Google Scholar 

  15. Cınar Y, Cingü AK, Türkcü FM, et al. Comparison of accelerated and conventional corneal collagen cross-linking for progressive keratoconus. Cutan Ocul Toxicol. 2014;33:218–22.

    Article  Google Scholar 

  16. Kymionis GD, Grentzelos MA, Kankariya VP, et al. Safety of high-intensity corneal collagen crosslinking. J Cataract Refract Surg. 2014;40:1337–40.

    Article  Google Scholar 

  17. Ulusoy DM, Göktaş E, Duru N, et al. Accelerated corneal crosslinking for treatment of progressive keratoconus in pediatric patients. Eur J Ophthalmol. 2017;27:319–25.

    Article  Google Scholar 

  18. Sachdev GS, Sachdev M. Recent advances in corneal collagen cross-linking. Indian J Ophthalmol. 2017;65:787–96.

    Article  Google Scholar 

  19. Richoz O, Hammer A, Tabibian D, et al. The biomechanical effect of corneal collagen crosslinking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2:6.

    Article  Google Scholar 

  20. Mazzotta C, Traversi C, Paradiso AL, Latronico ME, Rechichi M. Pulsed light accelerated crosslinking versus continuous light accelerated crosslinking: one-year results. J Ophthalmol. 2014;2014:604731.

    Article  Google Scholar 

  21. Spadea L, Tonti E, Vingolo EM. Corneal stromal demarcation line after collagen cross-linking in corneal ectatic diseases: a review of the literature. Clin Ophthalmol. 2016;10:1803–10.

    Article  CAS  Google Scholar 

  22. Moramarco A, Iovieno A, Sartori A, Fontana L. Corneal stromal demarcation line after accelerated crosslinking using continuous and pulsed light. J Cataract Refract Surg. 2015;41(11):2546–51.

    Article  Google Scholar 

  23. Akbar B, Intisar-Ul-Haq R, Ishaq M, Arzoo S, Siddique K. Transepithelial corneal crosslinking in treatment of progressive keratoconus: 12 months’ clinical results. Pak J Med Sci. 2017;33(3):570–5.

    Article  Google Scholar 

  24. Magli A, Chiariello Vecchio E, Carelli R, Piozzi E, Di Landro F, Troisi S. Pediatric keratoconus and iontophoretic corneal crosslinking: refractive and topographic evidence in patients underwent general and topical anesthesia, 18 months of follow-up. Int Ophthalmol. 2016;36(4):585–90.

    Article  Google Scholar 

  25. Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg. 2009;25(11):1034–7.

    Article  Google Scholar 

  26. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35(3):540–6.

    Article  Google Scholar 

  27. Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol. 2014;92(1):e30–4.

    Article  CAS  Google Scholar 

  28. Spadea L, Maraone G, Cagini C. Sliding keratoplasty followed by transepithelial iontophoresis collagen cross-linking for pellucid marginal degeneration. J Refract Surg. 2016;31(19):47–50.

    Article  Google Scholar 

  29. Bikbova G, Bikbov M. Standard corneal collagen crosslinking versus transepithelial iontophoresis-assisted corneal crosslinking, 24 months follow-up: randomized control trial. Acta Ophthalmol. 2016;94(7):e600–6.

    Article  CAS  Google Scholar 

  30. Cummings AB, McQuaid R, Naughton S, Brennan E, Mrochen M. Optimizing corneal cross-linking in the treatment of keratoconus: a comparison of outcomes after standard- and high-intensity protocols. Cornea. 2016;35(6):814–22.

    Article  Google Scholar 

  31. Sadoughi MM, Einollahi B, Baradaran-Rafii A, et al. Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intrapatient comparative study. Int Ophthalmol. 2018;38:67–74.

    Google Scholar 

  32. Kymionis GD, Tsoulnaras KI, Grentzelos MA, et al. Corneal stroma demarcation line after standard and high intensity collagen crosslinking determined with anterior segment optical coherence tomography. J Cataract Refract Surg. 2014;40:736–40.

    Article  Google Scholar 

  33. Ng AL, Chan TC, Lai JS, Cheng AC. Comparison of the central and peripheral corneal stromal demarcation line depth in conventional versus accelerated collagen cross-linking. Cornea. 2015;34(11):1432–6.

    Article  Google Scholar 

  34. Kymionis GD, Tsoulnaras KI, Grentzelos MA, et al. Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol. 2014;158:671–675.e1.

    Article  Google Scholar 

  35. Chow VW, Chan TC, Yu M, Wong VW, Jhanji V. One-year outcomes of conventional and accelerated collagen crosslinking in progressive keratoconus. Sci Rep. 2015;5:14425.

    Article  CAS  Google Scholar 

  36. Hashemi H, Miraftab M, Seyedian MA, et al. Long-term results of an accelerated corneal cross-linking protocol (18 mW/cm2) for the treatment of progressive keratoconus. Am J Ophthalmol. 2015;160(6):1164–70.

    Article  Google Scholar 

  37. Hashemi H, Fotouhi A, Miraftab M, et al. Short-term comparison of accelerated and standard methods of corneal collagen crosslinking. J Cataract Refract Surg. 2015;41:533–40.

    Article  Google Scholar 

  38. Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40:1013–20.

    Article  Google Scholar 

  39. Hashemian H, Jabbarvand M, Khodaparast M, Ameli K. Evaluation of corneal changes after conventional versus accelerated corneal cross-linking: a randomized controlled trial. J Refract Surg. 2014;30(12):837–42.

    Article  Google Scholar 

  40. Ozgurhan EB, Celik U, Bozkurt E, Demirok A. Evaluation of subbasal nerve morphology and corneal sensation after accelerated corneal collagen cross-linking treatment on keratoconus. Curr Eye Res. 2015;40(5):484–9.

    Article  CAS  Google Scholar 

  41. Cingu AK, Sogutlu-Sari E, Cınar Y, et al. Transient corneal endothelial changes following accelerated collagen cross-linking for the treatment of progressive keratoconus. Cutan Ocul Toxicol. 2014;33:127–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo Spadea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spadea, L., Napolitano, R., Tonti, E., De Rosa, V. (2019). Accelerated Corneal Cross-Linking. In: Barbara, A. (eds) Controversies in the Management of Keratoconus . Springer, Cham. https://doi.org/10.1007/978-3-319-98032-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98032-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98031-7

  • Online ISBN: 978-3-319-98032-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics