Skip to main content

Epithelium-Off Corneal Cross-Linking

  • Chapter
  • First Online:
Controversies in the Management of Keratoconus
  • 685 Accesses

Abstract

Changes in the biomechanical properties of the human cornea play an important role in the pathogenesis of corneal ectatic diseases. Many different pathological conditions in the cornea may reduce its biomechanical resistance. Corneal collagen cross-linking (CXL) has emerged as a promising technique to slow or even to stop the progression of ectasia. In this procedure, riboflavin (vitamin B2) is administered in conjunction with ultraviolet A light (UVA, 365 nm). This interaction causes the formation of reactive oxygen species, leading to additional covalent bonds between collagen molecules, with consequent biomechanical stiffening of the cornea. Although this method is not yet accepted as an evidence-based treatment of corneal ectasia, the results of prospective, randomised studies of CXL used in the treatment of this pathological entity show significant changes in the properties of corneal tissue. This procedure is currently the only aetiopathogenetic treatment of ectatic corneas that can delay or stop the process of cornea destabilisation, reducing the necessity for keratoplasty. Despite promising results, CXL is associated with issues that include long-term safety and duration of the stabilising effect. The chapter describes briefly standard “Dresden protocol” and also accelerated mode of CXL treatment. The attention of the chapter is turned to the importance of medical history of the patient, evidence of the progression of keratoconus and possible complications after the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.

    Article  CAS  Google Scholar 

  2. Raiskup F, Theuring A, Pillunat LE, et al. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41:41–6.

    Article  Google Scholar 

  3. Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci. 2011;52:9048–52. https://doi.org/10.1167/iovs.11-7818.

    Article  PubMed  Google Scholar 

  4. Krueger RR, Herekar S, Spoerl E. First proposed efficacy study of high versus standard irradiance and fractionated riboflavin/ultraviolet a cross-linking with equivalent energy exposure. Eye Contact Lens. 2014;40:353–7. https://doi.org/10.1097/icl.0000000000000095.

    Article  PubMed  Google Scholar 

  5. Hammer A, Richoz O, Arba Mosquera S, et al. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55:2881–4. https://doi.org/10.1167/iovs.13-13748.

    Article  PubMed  Google Scholar 

  6. Wernli J, Schumacher S, Spoerl E, et al. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54:1176–80. https://doi.org/10.1167/iovs.12-11409.

    Article  Google Scholar 

  7. Richoz O, Hammer A, Tabibian D, et al. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vision Sci Technol. 2013;2:6. https://doi.org/10.1167/tvst.2.7.6.

    Article  Google Scholar 

  8. Caporossi A, Mazzotta C, Baiocchi S, et al. Age-related long-term functional results after riboflavin UV A corneal cross-linking. J Ophthalmol. 2011;2011:608041. https://doi.org/10.1155/2011/608041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chatzis N, Hafezi F. Progression of keratoconus and efficacy of pediatric corrected corneal collagen cross-linking in children and adolescents. J Refract Surg (Thorofare, NJ: 1995). 2012;28:753–8. https://doi.org/10.3928/1081597x-20121011-01.

    Article  Google Scholar 

  10. Spoerl E, Zubaty V, Terai N, et al. Influence of high-dose cortisol on the biomechanics of incubated porcine corneal strips. J Refract Surg. 2009;25:S794–8. https://doi.org/10.3928/1081597x-20090813-06.

    Article  PubMed  Google Scholar 

  11. Spoerl E, Zubaty V, Raiskup-Wolf F, et al. Oestrogen-induced changes in biomechanics in the cornea as a possible reason for keratectasia. Br J Ophthalmol. 2007;91:1547–50. https://doi.org/10.1136/bjo.2007.124388.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bilgihan K, Hondur A, Sul S, et al. Pregnancy-induced progression of keratoconus. Cornea. 2011;30:991–4. https://doi.org/10.1097/ICO.0b013e3182068adc.

    Article  PubMed  Google Scholar 

  13. Gatzioufas Z, Panos GD, Gkaragkani E, et al. Recurrence of keratoconus after deep anterior lamellar keratoplasty following pregnancy. Int J Ophthalmol. 2017;10:1011–3. https://doi.org/10.18240/ijo.2017.06.28.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tabibian D, Tejada BMD, Gatzioufas Z, et al. Pregnancy-induced changes in corneal biomechanics and topography are thyroid hormone related. Am J Ophthalmol. 2017; https://doi.org/10.1016/j.ajo.2017.10.001.

    Article  Google Scholar 

  15. Hafezi F, Iseli HP. Pregnancy-related exacerbation of iatrogenic keratectasia despite corneal collagen crosslinking. J Cataract Refract Surg. 2008;34:1219–21. https://doi.org/10.1016/j.jcrs.2008.02.036.

    Article  PubMed  Google Scholar 

  16. Thanos S, Oellers P, Meyer Zu Horste M, et al. Role of thyroxine in the development of keratoconus. Cornea. 2016;35:1338–46. https://doi.org/10.1097/ico.0000000000000988.

    Article  PubMed  Google Scholar 

  17. Kappmeyer K, Lanzl IM. Intra-ocular pressure during and after playing high and low resistance wind instruments. Ophthalmologe. 2010;107:41–6.

    Article  CAS  Google Scholar 

  18. McMonnies CW. The possible significance of the baropathic nature of keratectasias. Clin Exp Optom. 2013;96:197–200.

    Article  Google Scholar 

  19. Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34:359–69. https://doi.org/10.1097/ico.0000000000000408.

    Article  PubMed  Google Scholar 

  20. Kuo IC, Broman A, Pirouzmanesh A, et al. Is there an association between diabetes and keratoconus? Ophthalmology. 2006;113:184–90. https://doi.org/10.1016/j.ophtha.2005.10.009.

    Article  PubMed  Google Scholar 

  21. Seiler T, Huhle S, Spoerl E, et al. Manifest diabetes and keratoconus: a retrospective case-control study. Graefes Arch Clin Exp Ophthalmol. 2000;238:822–5.

    Article  CAS  Google Scholar 

  22. Morita A. Tobacco smoke causes premature skin aging. J Dermatol Sci. 2007;48:169–75. https://doi.org/10.1016/j.jdermsci.2007.06.015.

    Article  CAS  PubMed  Google Scholar 

  23. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure amplification. Hypertension (Dallas, Tex: 1979). 2003;41:183–7.

    Article  CAS  Google Scholar 

  24. Spoerl E, Raiskup-Wolf F, Kuhlisch E, et al. Cigarette smoking is negatively associated with keratoconus. J Refract Surg. 2008;24:S737–40.

    Article  Google Scholar 

  25. Vinciguerra P, Albe E, Trazza S, et al. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology. 2009;116:369–78. https://doi.org/10.1016/j.ophtha.2008.09.048.

    Article  PubMed  Google Scholar 

  26. Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg. 2011;37:149–60.

    Article  Google Scholar 

  27. Duncan JK, Belin MW, Borgstrom M. Assessing progression of keratoconus: novel tomographic determinants. Eye Vision (London, England). 2016;3:6. https://doi.org/10.1186/s40662-016-0038-6.

    Article  Google Scholar 

  28. Belin MW, Duncan JK. Keratoconus: the ABCD grading system. Klin Monatsbl Augenheilkd. 2016;233:701–7. https://doi.org/10.1055/s-0042-100626.

    Article  CAS  PubMed  Google Scholar 

  29. Raiskup-Wolf F, Hoyer A, Spoerl E, et al. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34:796–801.

    Article  Google Scholar 

  30. Wittig-Silva C, Chan E, Islam FM, et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology. 2014;121:812–21.

    Article  Google Scholar 

  31. O’Brart DP, Patel P, Lascaratos G, et al. Corneal cross-linking to halt the progression of keratoconus and corneal ectasia: seven-year follow-up. Am J Ophthalmol. 2015;160:1154–63.

    Article  Google Scholar 

  32. Sharma N, Suri K, Sehra SV, et al. Collagen cross-linking in keratoconus in Asian eyes: visual, refractive and confocal microscopy outcomes in a prospective randomized controlled trial. Int Ophthalmol. 2015;35:827–32. https://doi.org/10.1007/s10792-015-0054-x.

    Article  PubMed  Google Scholar 

  33. Lang SJ, Messmer EM, Geerling G, et al. Prospective, randomized, double-blind trial to investigate the efficacy and safety of corneal cross-linking to halt the progression of keratoconus. BMC Ophthalmol. 2015;15:78.

    Article  Google Scholar 

  34. Kymionis GD, Tsoulnaras KI, Liakopoulos DA, et al. Corneal stromal demarcation line depth following standard and a modified high intensity corneal cross-linking protocol. J Refract Surg (Thorofare, NJ: 1995). 2016;32:218–22. https://doi.org/10.3928/1081597x-20160216-01.

    Article  Google Scholar 

  35. Ozgurhan EB, Akcay BIS, Kurt T, et al. Accelerated corneal collagen cross-linking in thin keratoconic corneas. J Refract Surg (Thorofare, NJ: 1995). 2015;31:386–90. https://doi.org/10.3928/1081597x-20150521-11.

    Article  Google Scholar 

  36. Ng ALK, Chan TCY, Lai JSM, et al. Comparison of the central and peripheral corneal stromal demarcation line depth in conventional versus accelerated collagen cross-linking. Cornea. 2015;34:1432–6. https://doi.org/10.1097/ico.0000000000000626.

    Article  PubMed  Google Scholar 

  37. Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40:1013–20. https://doi.org/10.1016/j.jcrs.2013.12.012.

    Article  PubMed  Google Scholar 

  38. Ozgurhan EB, Sezgin Akcay BI, Yildirim Y, et al. Evaluation of corneal stromal demarcation line after two different protocols of accelerated corneal collagen cross-linking procedures using anterior segment optical coherence tomography and confocal microscopy. J Ophthalmol. 2014;2014:981893. https://doi.org/10.1155/2014/981893.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kymionis GD, Tsoulnaras KI, Grentzelos MA, et al. Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol. 2014;158:671–675.e671. https://doi.org/10.1016/j.ajo.2014.07.005.

    Article  PubMed  Google Scholar 

  40. Kymionis GD, Tsoulnaras KI, Grentzelos MA, et al. Corneal stroma demarcation line after standard and high-intensity collagen crosslinking determined with anterior segment optical coherence tomography. J Cataract Refract Surg. 2014;40:736–40. https://doi.org/10.1016/j.jcrs.2013.10.029.

    Article  PubMed  Google Scholar 

  41. Kymionis GD, Tsoulnaras KI, Liakopoulos DA, et al. Corneal stromal demarcation line determined with anterior segment optical coherence tomography following a very high intensity corneal collagen cross-linking protocol. Cornea. 2015;34:664–7. https://doi.org/10.1097/ico.0000000000000427.

    Article  PubMed  Google Scholar 

  42. Kymionis GD, Grentzelos MA, Kankariya VP, et al. Safety of high-intensity corneal collagen crosslinking. J Cataract Refract Surg. 2014;40:1337–40. https://doi.org/10.1016/j.jcrs.2013.11.041.

    Article  PubMed  Google Scholar 

  43. Hashemi H, Fotouhi A, Miraftab M, et al. Short-term comparison of accelerated and standard methods of corneal collagen crosslinking. J Cataract Refract Surg. 2015;41:533–40. https://doi.org/10.1016/j.jcrs.2014.07.030.

    Article  PubMed  Google Scholar 

  44. Choi M, Kim J, Kim EK, et al. Comparison of the conventional dresden protocol and accelerated protocol with higher ultraviolet intensity in corneal collagen cross-linking for keratoconus. Cornea. 2017;36:523–9. https://doi.org/10.1097/ico.0000000000001165.

    Article  PubMed  Google Scholar 

  45. Kymionis GD, Portaliou DM, Bouzoukis DI, et al. Herpetic keratitis with iritis after corneal crosslinking with riboflavin and ultraviolet A for keratoconus. J Cataract Refract Surg. 2007;33:1982–4. https://doi.org/10.1016/j.jcrs.2007.06.036.

    Article  PubMed  Google Scholar 

  46. Pollhammer M, Cursiefen C. Bacterial keratitis early after corneal crosslinking with riboflavin and ultraviolet-A. J Cataract Refract Surg. 2009;35:588–9. https://doi.org/10.1016/j.jcrs.2008.09.029.

    Article  PubMed  Google Scholar 

  47. Rama P, Di Matteo F, Matuska S, et al. Acanthamoeba keratitis with perforation after corneal crosslinking and bandage contact lens use. J Cataract Refract Surg. 2009;35:788–91. https://doi.org/10.1016/j.jcrs.2008.09.035.

    Article  PubMed  Google Scholar 

  48. Zamora KV, Males JJ. Polymicrobial keratitis after a collagen cross-linking procedure with postoperative use of a contact lens: a case report. Cornea. 2009;28:474–6. https://doi.org/10.1097/ICO.0b013e31818d381a.

    Article  PubMed  Google Scholar 

  49. Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg. 2009;35:1358–62.

    Article  Google Scholar 

  50. Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line. Cornea. 2006;25:1057–9. https://doi.org/10.1097/01.ico.0000225720.38748.58.

    Article  PubMed  Google Scholar 

  51. Herrmann CI, Hammer T, Duncker GI. Hazeformation (corneal scarring) after cross-linking therapy in keratoconus. Ophthalmologe. 2008;105:485–7.

    Article  CAS  Google Scholar 

  52. Mazzotta C, Traversi C, Baiocchi S, et al. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol. 2008;146:527–33. https://doi.org/10.1016/j.ajo.2008.05.042.

    Article  CAS  PubMed  Google Scholar 

  53. Mazzotta C, Balestrazzi A, Baiocchi S, et al. Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation. Clin Exp Ophthalmol. 2007;35:580–2.

    Article  Google Scholar 

  54. Greenstein SA, Fry KL, Bhatt J, et al. Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic analysis. J Cataract Refract Surg. 2010;36:2105–14.

    Article  Google Scholar 

  55. Raiskup F, Hoyer A, Spoerl E. Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg. 2009;25:S824–8.

    Article  Google Scholar 

  56. Kymionis GD, Portaliou DM, Diakonis VF, et al. Corneal collagen cross-linking with riboflavin and ultraviolet-A irradiation in patients with thin corneas. Am J Ophthalmol. 2012;153:24–8. https://doi.org/10.1016/j.ajo.2011.05.036.

    Article  CAS  PubMed  Google Scholar 

  57. Gokhale NS. Corneal endothelial damage after collagen cross-linking treatment. Cornea. 2011;30:1495–8. https://doi.org/10.1097/ICO.0b013e31820687f7.

    Article  PubMed  Google Scholar 

  58. Bagga B, Pahuja S, Murthy S, et al. Endothelial failure after collagen cross-linking with riboflavin and UV-A: case report with literature review. Cornea. 2012;31:1197–200. https://doi.org/10.1097/ICO.0b013e31823cbeb1.

    Article  PubMed  Google Scholar 

  59. Labiris G, Kaloghianni E, Koukoula S, et al. Corneal melting after collagen cross-linking for keratoconus: a case report. J Med Case Rep. 2011;5:152. https://doi.org/10.1186/1752-1947-5-152.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gokhale NS, Vemuganti GK. Diclofenac-induced acute corneal melt after collagen crosslinking for keratoconus. Cornea. 2010;29:117–9. https://doi.org/10.1097/ICO.0b013e3181a06c31.

    Article  Google Scholar 

  61. Faschinger C, Kleinert R, Wedrich A. Corneal melting in both eyes after simultaneous corneal cross-linking in a patient with keratoconus and Down syndrome. Ophthalmologe. 2010;107:951–2, 954–5.

    Article  CAS  Google Scholar 

  62. Eberwein P, Auw-Hadrich C, Birnbaum F, et al. Corneal melting after cross-linking and deep lamellar keratoplasty in a keratoconus patient. Klin Monatsbl Augenheilkd. 2008;225:96–8. https://doi.org/10.1055/s-2008-1027128.

    Article  CAS  PubMed  Google Scholar 

  63. Craig JA, Mahon J, Yellowlees A, et al. Epithelium-off photochemical corneal collagen cross-linkage using riboflavin and ultraviolet a for keratoconus and keratectasia: a systematic review and meta-analysis. Ocul Surf. 2014;12:202–14. https://doi.org/10.1016/j.jtos.2014.05.002.

    Article  PubMed  Google Scholar 

  64. Pron G, Ieraci L, Kaulback K. Collagen cross-linking using riboflavin and ultraviolet-a for corneal thinning disorders: an evidence-based analysis. Ont Health Technol Assess Ser. 2011;11:1–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sandvik GF, Thorsrud A, Raen M, et al. Does corneal collagen cross-linking reduce the need for keratoplasties in patients with keratoconus? Cornea. 2015;34:991–5.

    Article  Google Scholar 

  66. Godefrooij DA, Gans R, Imhof SM, et al. Nationwide reduction in the number of corneal transplantations for keratoconus following the implementation of cross-linking. Acta Ophthalmol. 2016;94:675–8.

    Article  Google Scholar 

  67. Rebenitsch RL, Kymes SM, Walline JJ, et al. The lifetime economic burden of keratoconus: a decision analysis using a markov model. Am J Ophthalmol. 2011;151:768–73.e762. https://doi.org/10.1016/j.ajo.2010.10.034.

    Article  Google Scholar 

  68. Salmon HA, Chalk D, Stein K, et al. Cost effectiveness of collagen crosslinking for progressive keratoconus in the UK NHS. Eye (London, England). 2015;29:1504–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Raiskup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raiskup, F. (2019). Epithelium-Off Corneal Cross-Linking. In: Barbara, A. (eds) Controversies in the Management of Keratoconus . Springer, Cham. https://doi.org/10.1007/978-3-319-98032-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98032-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98031-7

  • Online ISBN: 978-3-319-98032-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics