Skip to main content

Deflection Modeling of a Manipulator for Mechanical Design

  • Conference paper
  • First Online:
EuCoMeS 2018 (EuCoMeS 2018)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 59))

Included in the following conference series:

  • 698 Accesses

Abstract

A manipulator model for use in a design process of manipulator mechanics is shown in this paper. The target is to minimize deformation and vibrations in application. The focus is to model manipulator components and merge them in a manipulator model. The proposed model uses the Floating Frame of Reference approach for modeling the structural parts of the manipulator. The elastic modeling of bearings is introduced. An approach to consider stiffness and damping of bolted joint is presented. The cable stiffness is calculated. A simple drivetrain model is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betti, R., Yanev, B.: Conditions of suspension bridge cables: New York city case study. Transp. Res. Rec.: J. Transp. Res. Board 1654, 105–112 (1999)

    Article  Google Scholar 

  2. Bograd, S., Schmidt, A., Gaul, L.: Joint damping prediction by thin layer elements. In: Proceedings of the IMAC 26th Society of Experimental Mechanics Inc. Bethel, CT (2008)

    Google Scholar 

  3. De Luca, A., Tomei, P.: Theory of robot control. Elastic Joints, pp. 179–218 (1996)

    Google Scholar 

  4. Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik. Springer, Heidelberg (2006)

    Google Scholar 

  5. Großmann, K., Rudolph, H.: Dämpfungsbeschreibung für die modellgestützte dynamische Strukturanalyse: Modellierungsansätze zur Beschreibung strukturrelevanter Dämpfung an Werkzeugmaschinen. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 103(11), 767–773 (2008)

    Article  Google Scholar 

  6. Gunduz, A.: Multi-dimensional stiffness characteristics of double row angular contact ball bearings and their role in influencing vibration modes. Ph.D. thesis, The Ohio State University (2012)

    Google Scholar 

  7. Heckmann, A.: On the choice of boundary conditions for mode shapes in flexible multibody systems. Multibody Syst. Dyn. 23(2), 141–163 (2010)

    Article  MathSciNet  Google Scholar 

  8. Inagaki, K., Ekh, J., Zahrai, S.: Mechanical analysis of second order helical structure in electrical cable. Int. J. Solids Struct. 44(5), 1657–1679 (2007)

    Article  Google Scholar 

  9. Le Marrec, L., Zhang, D., Ostoja-Starzewski, M.: Three-dimensional vibrations of a helically wound cable modeled as a timoshenko rod. Acta Mechanica 229, 1–19 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Lim, T., Singh, R.: Vibration transmission through rolling element bearings, part i: bearing stiffness formulation. J. Sound Vibr. 139(2), 179–199 (1990)

    Article  Google Scholar 

  11. Moberg, S.: Modeling and control of flexible manipulators. Ph.D. thesis, Linköping University Electronic Press (2010)

    Google Scholar 

  12. Niehues, K.K.: Identifikation linearer Dämpfungsmodelle fuer Werkzeugmaschinenstrukturen, vol. 318. Herbert Utz Verlag (2016)

    Google Scholar 

  13. Papailiou, K.: On the bending stiffness of transmission line conductors. IEEE Trans. Power Deliv. 12(4), 1576–1588 (1997)

    Article  Google Scholar 

  14. Papailiou, K.O.: Die Seilbiegung mit einer durch die innere Reibung, die Zugkraft und die Seilkrümmung veränderlichen Biegesteifigkeit. Ph.D. thesis, ETH Zürich (1995)

    Google Scholar 

  15. Popov, V.: Kontaktmechanik und Reibung: von der Nanotribologie bis zur Erdbebendynamik. Springer, Heidelberg (2016)

    Google Scholar 

  16. Qian, W., Jacobs, G.: Dynamic simulation of cylindrical roller bearings. Technical report, Lehrstuhl und Institut für Maschinenelemente und Maschinengestaltung (2014)

    Google Scholar 

  17. Raghava, B.V., Reddy, S.K.: Deformation and durability studies of insulation polymers. Ph.D. thesis, University of Akron (2008)

    Google Scholar 

  18. Razpotnik, M., Bischof, T., Boltežar, M.: The influence of bearing stiffness on the vibration properties of statically overdetermined gearboxes. J. Sound Vibr. 351, 221–235 (2015)

    Article  Google Scholar 

  19. Reiner, M.J.: Modellierung und Steuerung von strukturelastischen Robotern. Dissertation, Technical University Munich, Germany (2010)

    Google Scholar 

  20. Rudolph, H., Ihlenfeldt, S.: Dämpfung in verspannten Fugen - Teil1. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 111(7–8), 439–444 (2016)

    Article  Google Scholar 

  21. Seifried, R.: Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design, vol. 205. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  22. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  Google Scholar 

  23. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  24. Tadina, M., Boltežar, M.: Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up. J. Sound Vibr. 330(17), 4287–4301 (2011)

    Article  Google Scholar 

  25. Weiser, T., Corves, B.: Modelling of roller bearings. In: Proceedings of the 12th International Modelica Conference. Linköping University Electronic Press (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Weiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weiser, T., Corves, B. (2019). Deflection Modeling of a Manipulator for Mechanical Design. In: Corves, B., Wenger, P., Hüsing, M. (eds) EuCoMeS 2018 . EuCoMeS 2018. Mechanisms and Machine Science, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-98020-1_36

Download citation

Publish with us

Policies and ethics