Skip to main content

Design of a Finger Exoskeleton for Motion Guidance

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 59))

Abstract

In this paper, a novel exoskeleton for finger rehabilitation is presented. The exoskeleton is designed as a serial, 2-degrees-of-freedom wearable mechanism that is able to follow human finger motion. Motion tracking is used to characterize the movement of the human finger. Thereby the design requirements are outlined. The mechanism is synthesized, and its simulated motion is compared with experimental data to validate the proposed design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tjahyono, A.P., Aw, K.C., Devaraj, H., Surendra, W., Haemmerle, E., Travas-Sejdic, J.: A five-fingered hand exoskeleton driven by pneumatic artificial muscles with novel polypyrrole sensors. Ind. Robot: Int. J. 40(3), 251–260 (2013)

    Article  Google Scholar 

  2. Kaplan, W., Wirtz, V., Mantel, A., Béatrice, P.S.U.: Priority medicines for Europe and the world update 2013 report. Methodology 2(7), 99–102 (2013)

    Google Scholar 

  3. Agarwal, P., Fox, J., Yun, Y., O’Malley, M.K., Deshpande, A.D.: An index finger exoskeleton with series elastic actuation for rehabilitation: design, control and performance characterization. Int. J. Robot. Res. 34(14), 1747–1772 (2015)

    Article  Google Scholar 

  4. Sale, P., Lombardi, V., Franceschini, M.: Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res. Treat. 2012, 2–5 (2012)

    Google Scholar 

  5. Bataller, A., Cabrera, J.A., Clavijo, M., Castillo, J.J.: Evolutionary synthesis of mechanisms applied to the design of an exoskeleton for finger rehabilitation. Mech. Mach. Theory 105, 31–43 (2016)

    Article  Google Scholar 

  6. Tyromotion GmbH: AMADEO. http://tyromotion.com/en/products/amadeo. Accessed 29 Jan 2018

  7. Ates, S., Haarman, C.J., Stienen, A.H.: SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Auton. Robot. 41(3), 711–723 (2017)

    Article  Google Scholar 

  8. Liu, K., Hasegawa, Y., Saotome, K., Sainkai, Y.: Design of an wearable MRI-compatible hand exoskeleton robot. In: International Conference on Intelligent Robotics and Applications, pp. 242–250. Springer, Cham, August 2017

    Google Scholar 

  9. Carbone G., Ceccarelli M.: Design of LARM hand: problems and solutions. In: 2008 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics, AQTR 2008, Cluj-Napoca, pp. 298–303 (2008). (Best Paper Award) J. Control Eng. Appl. Inform. 10(2), 39–46 (2008)

    Google Scholar 

  10. Cafolla, D., Carbone, G.: A study of feasibility of a human finger exoskeleton. In: Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics, pp. 355–364. Springer, Cham (2014)

    Google Scholar 

  11. Levangie, P.K., Norkin, C.C.: Joint Structure and Function: a Comprehensive Analysis. F.A. Davis, Philadelphia (2005)

    Google Scholar 

  12. Cobos, S., Ferre, M., Uran, M.S., Ortego, J., Pena, C.: Efficient human hand kinematics for manipulation tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2246–2251. IEEE, September 2008

    Google Scholar 

  13. Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley, London (2008)

    Book  Google Scholar 

  14. Heo, P., Gu, G.M., Lee, S.J., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012)

    Article  Google Scholar 

  15. Hagedorn, L., Thonfeld, W., Rankers, A.: Konstruktive Getriebelehre. Springer, Berlin (2009)

    Book  Google Scholar 

  16. Mnyusiwalla, H., Vulliez, P., Gazeau, J.P., Zeghloul, S.: A new dexterous hand based on bio-inspired finger design for inside-hand manipulation. IEEE Trans. Syst. Man Cybern.: Syst. 46(6), 809–817 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the Erasmus+ program for the period of study he spent in 2017–2018 at the University of Cassino and South Latium under the supervision of Prof. M. Ceccarelli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike-Cristian Gerding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerding, EC. et al. (2019). Design of a Finger Exoskeleton for Motion Guidance. In: Corves, B., Wenger, P., Hüsing, M. (eds) EuCoMeS 2018 . EuCoMeS 2018. Mechanisms and Machine Science, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-98020-1_2

Download citation

Publish with us

Policies and ethics