Skip to main content

Risk Adjustment Methodologies

  • Chapter
  • First Online:
Quality Spine Care

Abstract

Each year there are more than one million hospital admissions for patients undergoing spine surgery. However, there is great heterogeneity in both the procedures performed and the patients who undergo them. In recent years, there is increased focus on optimizing patient outcomes and comparing outcomes across providers and care facilities. Current generalized risk stratification models help account for some of the heterogeneity across patients, but most are not spine-specific. As a result, they fail to emphasize spine-specific risk factors, and they do not include procedure details, such as the use of instrumentation, osteotomies, and construct length, all of which significantly increase the risk for complications. In this chapter, we provide an overview of risk factors for worse outcomes in spine surgery patients and discuss current efforts to formulate risk stratification systems for this population using the power of national databases and predictive analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fingar KR, Stocks C, Weiss AJ, Steiner CA. Most frequent operating room procedures performed in U.S. hospitals, 2003–2012: Statistical Brief #186. 2014;186.

    Google Scholar 

  2. Martin BI, Turner JA, Mirza SK, Lee MJ, Comstock BA, Deyo RA. Trends in health care expenditures, utilization, and health status among US adults with spine problems, 1997–2006. Spine (Phila Pa 1976). 2009;34(19):2077–84.

    Article  Google Scholar 

  3. Davis MA, Onega T, Weeks WB, Lurie JD. Where the United States spends its spine dollars: expenditures on different ambulatory services for the management of back and neck conditions. Spine (Phila Pa 1976). 2012;37(19):1693–701.

    Article  Google Scholar 

  4. Weiss AJ, Elixhauser A, Andrews RM. Characteristics of operating room procedures in U.S. hospitals, 2011. Statistical Brief #170. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. 2014;170.

    Google Scholar 

  5. Kim HJ, Piyaskulkaew C, Riew KD. Comparison of Smith-Petersen osteotomy versus pedicle subtraction osteotomy versus anterior-posterior osteotomy types for the correction of cervical spine deformities. Spine. 2015;40(3):143–6.

    Article  PubMed  Google Scholar 

  6. Kim HJ, Bridwell KH, Lenke LG, Park MS, Song KS, Piyaskulkaew C, et al. Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections. Spine. 2014;39(9):576.

    Article  Google Scholar 

  7. Uddin OM, Haque R, Sugrue PA, Ahmed YM, El Ahmadieh TY, Press JM, et al. Cost minimization in treatment of adult degenerative scoliosis. J Neurosurg Spine. 2015;23(6):798–806.

    Article  PubMed  Google Scholar 

  8. Juhnke C, Bethge S, Mühlbacher AC. A review on methods of risk adjustment and their use in integrated healthcare systems. Int J Integr Care. 2016;16(4):4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yeramaneni S, Robinson C, Hostin R. Impact of spine surgery complications on costs associated with management of adult spinal deformity. Curr Rev Musculoskelet Med. 2016;9(3):327–32.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Culler SD, Jevsevar DS, Shea KG, McGuire KJ, Schlosser M, Wright KK, et al. Incremental hospital cost and length-of-stay associated with treating adverse events among medicare beneficiaries undergoing lumbar spinal fusion during fiscal year 2013. Spine. 2016;41(20):1613–20.

    Article  PubMed  Google Scholar 

  11. Bredow J, Boese CK, Werner CML, Siewe J, Löhrer L, Zarghooni K, et al. Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch Orthop Trauma Surg. 2016;136(8):1063–7.

    Article  PubMed  Google Scholar 

  12. Guzman JZ, Feldman ZM, McAnany S, Hecht AC, Qureshi SA, Cho SK. Osteoporosis in cervical spine surgery. Spine. 2016;41(8):662–8.

    Article  PubMed  Google Scholar 

  13. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1(6):402–7.

    Article  CAS  PubMed  Google Scholar 

  14. How NE, Street JT, Dvorak MF, Fisher CG, Kwon BK, Paquette S, et al. Pseudarthrosis in adult and pediatric spinal deformity surgery: a systematic review of the literature and meta-analysis of incidence, characteristics, and risk factors. Neurosurg Rev. 2018. https://doi.org/10.1007/s10143-018-0951-3. [Epub ahead of print].

  15. Kong L, Liu Z, Meng F, Shen Y. Smoking and risk of surgical site infection after spinal surgery: a systematic review and meta-analysis. Surg Infect (Larchmt). 2017;18(2):206–14.

    Article  Google Scholar 

  16. Purvis TE, Rodriguez HJ, Ahmed AK, Boone C, De la Garza-Ramos R, Elder BD, et al. Impact of smoking on postoperative complications after anterior cervical discectomy and fusion. J Clin Neurosci. 2017;38:106–10.

    Article  PubMed  Google Scholar 

  17. De la Garza-Ramos R, Abt NB, Kerezoudis P, McCutcheon BA, Bydon A, Gokaslan Z, et al. Deep-wound and organ-space infection after surgery for degenerative spine disease: an analysis from 2006 to 2012. Neurol Res. 2016;38(2):117–23.

    Article  PubMed  Google Scholar 

  18. Guzman JZ, Skovrlj B, Shin J, Hecht AC, Qureshi SA, Iatridis JC, et al. The impact of diabetes mellitus on patients undergoing degenerative cervical spine surgery. Spine. 2014;39(20):1656–65.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qin C, Kim JYS, Hsu WK. Impact of insulin dependence on lumbar surgery outcomes: an NSQIP analysis of 51,277 patients. Spine. 2016;41(11):687.

    Article  Google Scholar 

  20. Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. 2010;303(13):1259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaye ID, Marascalchi BJ, Macagno AE, Lafage VA, Bendo JA, Passias PG. Predictors of morbidity and mortality among patients with cervical spondylotic myelopathy treated surgically. Eur Spine J. 2015;24(12):2910–7.

    Article  PubMed  Google Scholar 

  22. Patil CG, Santarelli J, Lad SP, Ho C, Tian W, Boakye M. Inpatient complications, mortality, and discharge disposition after surgical correction of idiopathic scoliosis: a national perspective. Spine J. 2008;8(6):904–10.

    Article  PubMed  Google Scholar 

  23. Bono CM, Harris MB, Warholic N, Katz JN, Carreras E, White A, et al. Pain intensity and patients’ acceptance of surgical complication risks with lumbar fusion. Spine (Phila Pa 1976). 2013;38(2):140–7.

    Article  Google Scholar 

  24. Kalanithi PA, Arrigo R, Boakye M. Morbid obesity increases cost and complication rates in spinal arthrodesis. Spine. 2012;37(11):982–8.

    Article  PubMed  Google Scholar 

  25. Puvanesarajah V, Werner BC, Cancienne JM, Jain A, Pehlivan H, Shimer AL, et al. Morbid obesity and lumbar fusion in patients older than 65 years: complications, readmissions, costs, and length of stay. Spine. 2017;42(2):122–7.

    Article  PubMed  Google Scholar 

  26. de la Garza-Ramos R, Goodwin CR, Jain A, Martinez-Ramirez D, Karikari IO, Sciubba DM. Inpatient morbidity after spinal deformity surgery in patients with movement disorders. J Spine Surg. 2017;3:601–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jain A, Puvanesarajah V, Menga EN, Sponseller PD. Unplanned hospital readmissions and reoperations after pediatric spinal fusion surgery. Spine. 2015;40(11):856–62.

    Article  PubMed  Google Scholar 

  28. McClelland S, Baker JF, Smith JS, Line BG, Errico TJ, Ames CP, et al. Impact of Parkinson’s disease on perioperative complications and hospital cost in multilevel spine fusion: a population-based analysis. J Clin Neurosci. 2017;35:88–91.

    Article  PubMed  Google Scholar 

  29. De la Garza Ramos R, Goodwin CR, Elder BD, Boah AO, Miller EK, Jain A, et al. Preoperative functional status as a predictor of short-term outcome in adult spinal deformity surgery. J Clin Neurosci. 2017;39:118–23.

    Article  PubMed  Google Scholar 

  30. Deyo RA, Hickam D, Duckart JP, Piedra M. Complications after surgery for lumbar stenosis in a veteran population. Spine. 2013;38(19):1695–702.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karhade AV, Vasudeva VS, Dasenbrock HH, Lu Y, Gormley WB, Groff MW, et al. Thirty-day readmission and reoperation after surgery for spinal tumors: a National Surgical Quality Improvement Program analysis. Neurosurg Focus. 2016;41(2):E5.

    Article  PubMed  Google Scholar 

  32. Scheer JK, Smith JS, Schwab F, Lafage V, Shaffrey CI, Bess S, et al. Development of a preoperative predictive model for major complications following adult spinal deformity surgery. J Neurosurg Spine. 2017;26(6):736–43.

    Article  PubMed  Google Scholar 

  33. Satake K, Kanemura T, Yamaguchi H, Segi N, Ouchida J. Predisposing factors for intraoperative endplate injury of extreme lateral interbody fusion. Asian Spine J. 2016;10(5):907–14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Formby PM, Kang DG, Helgeson MD, Wagner SC. Clinical and radiographic outcomes of transforaminal lumbar interbody fusion in patients with osteoporosis. Global Spine J. 2016;6(7):660–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nemani VM, Aichmair A, Taher F, Lebl DR, Hughes AP, Sama AA, et al. Rate of revision surgery after stand-alone lateral lumbar interbody fusion for lumbar spinal stenosis. Spine. 2014;39(5):326.

    Article  Google Scholar 

  36. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine. 2005;30(6):682–8.

    Article  PubMed  Google Scholar 

  37. Jain N, Phillips FM, Khan SN. Distribution and determinants of 90-day payments for multilevel posterior lumbar fusion: a medicare analysis. Clin Spine Surg. 2018;31:E197–203.

    Article  PubMed  Google Scholar 

  38. Adogwa O, Carr RK, Kudyba K, Karikari I, Bagley CA, Gokaslan ZL, et al. Revision lumbar surgery in elderly patients with symptomatic pseudarthrosis, adjacent-segment disease, or same-level recurrent stenosis. Part 1. Two-year outcomes and clinical efficacy: clinical article. J Neurosurg Spine. 2013;18(2):139–46.

    Article  PubMed  Google Scholar 

  39. Berman D, Oren JH, Bendo J, Spivak J. The effect of smoking on spinal fusion. Int J Spine Surg. 2017;11:29.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Phan K, Fadhil M, Chang N, Giang G, Gragnaniello C, Mobbs RJ. Effect of smoking status on successful arthrodesis, clinical outcome, and complications after Anterior Lumbar Interbody Fusion (ALIF). World Neurosurg. 2017;110:998–1003.

    Article  Google Scholar 

  41. Elsamadicy AA, Adogwa O, Sergesketter A, Vuong VD, Lydon E, Behrens S, et al. Reduced impact of smoking status on 30-day complication and readmission rates after elective spinal fusion (≥3 levels) for adult spine deformity: a single institutional study of 839 patients. World Neurosurg. 2017;107:233–8.

    Article  PubMed  Google Scholar 

  42. Sebaaly A, Shedid D, Boubez G, Zairi F, Kanhonou M, Yuh S, et al. Surgical site infection in spinal metastasis: incidence and risk factors. Spine J. 2018. pii:S1529-9430(18)300004-4.

    Google Scholar 

  43. Shamji MF, Mroz T, Hsu W, Chutkan N. Management of degenerative lumbar spinal stenosis in the elderly. Neurosurgery. 2015;77(Suppl 4):68.

    Article  Google Scholar 

  44. Phan K, Rogers P, Rao PJ, Mobbs RJ. Influence of obesity on complications, clinical outcome, and subsidence after Anterior Lumbar Interbody Fusion (ALIF): prospective observational study. World Neurosurg. 2017;107:334–41.

    Article  PubMed  Google Scholar 

  45. Guzman JZ, Iatridis JC, Skovrlj B, Cutler HS, Hecht AC, Qureshi SA, et al. Outcomes and complications of diabetes mellitus on patients undergoing degenerative lumbar spine surgery. Spine. 2014;39(19):1596–604.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Golinvaux NS, Varthi AG, Bohl DD, Basques BA, Grauer JN. Complication rates following elective lumbar fusion in patients with diabetes: insulin dependence makes the difference. Spine. 2014;39(21):1809–16.

    Article  PubMed  Google Scholar 

  47. Fei Q, Li J, Lin J, Li D, Wang B, Meng H, et al. Risk factors for surgical site infection after spinal surgery: a meta-analysis. World Neurosurg. 2016;95:507–15.

    Article  PubMed  Google Scholar 

  48. Epstein NE. Predominantly negative impact of diabetes on spinal surgery: a review and recommendation for better preoperative screening. Surg Neurol Int. 2017;8:107.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cook C, Tackett S, Shah A, Pietrobon R, Browne J, Viens N, et al. Diabetes and perioperative outcomes following cervical fusion in patients with myelopathy. Spine. 2008;33(8):254.

    Article  Google Scholar 

  50. Browne JA, Cook C, Pietrobon R, Bethel MA, Richardson WJ. Diabetes and early postoperative outcomes following lumbar fusion. Spine. 2007;32(20):2214–9.

    Article  PubMed  Google Scholar 

  51. Abdul-Jabbar A, Takemoto S, Weber MH, Hu SS, Mummaneni PV, Deviren V, et al. Surgical site infection in spinal surgery: description of surgical and patient-based risk factors for postoperative infection using administrative claims data. Spine. 2012;37(15):1340–5.

    Article  PubMed  Google Scholar 

  52. Boakye M, Patil CG, Santarelli J, Ho C, Tian W, Lad SP. Cervical spondylotic myelopathy: complications and outcomes after spinal fusion. Neurosurgery. 2008;62(2):462.

    Article  Google Scholar 

  53. Smith JS, Klineberg E, Lafage V, Shaffrey CI, Schwab F, Lafage R, et al. Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine. 2016;25(1):1–14.

    Article  PubMed  Google Scholar 

  54. Pugely AJ, Martin CT, Gao Y, Mendoza-Lattes S. Causes and risk factors for 30-day unplanned readmissions after lumbar spine surgery. Spine. 2014;39(9):761–8.

    Article  PubMed  Google Scholar 

  55. Patil CG, Lad SP, Santarelli J, Boakye M. National inpatient complications and outcomes after surgery for spinal metastasis from 1993–2002. Cancer. 2007;110(3):625–30.

    Article  PubMed  Google Scholar 

  56. Kalanithi PS, Patil CG, Boakye M. National complication rates and disposition after posterior lumbar fusion for acquired spondylolisthesis. Spine. 2009;34(18):1963–9.

    Article  PubMed  Google Scholar 

  57. Buerba RA, Giles E, Webb ML, Fu MC, Gvozdyev B, Grauer JN. Increased risk of complications after anterior cervical discectomy and fusion in the elderly: an analysis of 6253 patients in the American College of Surgeons National Surgical Quality Improvement Program database. Spine. 2014;39(25):2062–9.

    Article  PubMed  Google Scholar 

  58. Leven D, Passias PG, Errico TJ, Lafage V, Bianco K, Lee A, et al. Risk factors for reoperation in patients treated surgically for intervertebral disc herniation: a subanalysis of eight-year SPORT data. J Bone Joint Surg Am. 2015;97(16):1316–25.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Partridge JSL, Harari D, Dhesi JK. Frailty in the older surgical patient: a review. Age Ageing. 2012;41(2):142–7.

    Article  PubMed  Google Scholar 

  60. Rolfson DB, Majumdar SR, Tsuyuki RT, Tahir A, Rockwood K. Validity and reliability of the Edmonton Frail Scale. Age Ageing. 2006;35(5):526–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Joseph B, Pandit V, Zangbar B, Kulvatunyou N, Hashmi A, Green DJ, et al. Superiority of frailty over age in predicting outcomes among geriatric trauma patients: a prospective analysis. JAMA Surg. 2014;149(8):766–72.

    Article  PubMed  Google Scholar 

  62. Sebastian A, Huddleston P, Kakar S, Habermann E, Wagie A, Nassr A. Risk factors for surgical site infection after posterior cervical spine surgery: an analysis of 5,441 patients from the ACS NSQIP 2005-2012. Spine J. 2016;16(4):504–9.

    Article  PubMed  Google Scholar 

  63. Ou C, Lee T, Lee T, Huang Y. Impact of body mass index on adjacent segment disease after lumbar fusion for degenerative spine disease. Neurosurgery. 2015;76(4):402; quiz 402.

    Article  PubMed  Google Scholar 

  64. Manoharan SR, Baker DK, Pasara SM, Ponce B, Deinlein D, Theiss SM. Thirty-day readmissions following adult spinal deformity surgery: an analysis of the National Surgical Quality Improvement Program (NSQIP) database. Spine J. 2016;16(7):862–6.

    Article  CAS  PubMed  Google Scholar 

  65. Lingutla KK, Pollock R, Benomran E, Purushothaman B, Kasis A, Bhatia CK, et al. Outcome of lumbar spinal fusion surgery in obese patients: a systematic review and meta-analysis. Bone Joint J. 2015;97-B(10):1395–404.

    Article  CAS  PubMed  Google Scholar 

  66. Lim S, Edelstein AI, Patel AA, Kim BD, Kim JYS. Risk factors for postoperative infections after single-level lumbar fusion surgery. Spine. 2018;43(3):215–22.

    Article  PubMed  Google Scholar 

  67. Lee NJ, Shin JI, Kothari P, Kim JS, Leven DM, Steinberger J, et al. Incidence, impact, and risk factors for 30-day wound complications following elective adult spinal deformity surgery. Global Spine J. 2017;7(5):417–24.

    Article  PubMed  PubMed Central  Google Scholar 

  68. De la Garza Ramos R, Nakhla J, Nasser R, Schulz JF, Purvis TE, Sciubba DM, et al. Effect of body mass index on surgical outcomes after posterior spinal fusion for adolescent idiopathic scoliosis. Neurosurg Focus. 2017;43(4):E5.

    Article  PubMed  Google Scholar 

  69. Buerba RA, Fu MC, Gruskay JA, Long WD, Grauer JN. Obese Class III patients at significantly greater risk of multiple complications after lumbar surgery: an analysis of 10,387 patients in the ACS NSQIP database. Spine J. 2014;14(9):2008–18.

    Article  PubMed  Google Scholar 

  70. Abdallah DY, Jadaan MM, McCabe JP. Body mass index and risk of surgical site infection following spine surgery: a meta-analysis. Eur Spine J. 2013;22(12):2800–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cornier M, Després J, Davis N, Grossniklaus DA, Klein S, Lamarche B, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124(18):1996.

    Article  PubMed  Google Scholar 

  72. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell ML, Korinek J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes. 2008;32(6):959–66.

    Article  CAS  Google Scholar 

  73. Sing DC, Yue JK, Metz LN, Winkler EA, Zhang WR, Burch S, et al. Obesity is an independent risk factor of early complications after revision spine surgery. Spine. 2016;41(10):632.

    Article  Google Scholar 

  74. Bohl DD, Ahn J, Tabaraee E, Ahn J, Jain A, Grauer JN, et al. Urinary tract infection following posterior lumbar fusion procedures: an American College of Surgeons National Surgical Quality Improvement Program Study. Spine. 2015;40(22):1785–91.

    Article  PubMed  Google Scholar 

  75. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis. 1987;40(5):373–83.

    Article  CAS  PubMed  Google Scholar 

  76. Charlson M, Wells MT, Ullman R, King F, Shmukler C. The Charlson comorbidity index can be used prospectively to identify patients who will incur high future costs. PLoS One. 2014;9(12):e112479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Whitmore RG, Stephen JH, Vernick C, Campbell PG, Yadla S, Ghobrial GM, et al. ASA grade and Charlson Comorbidity Index of spinal surgery patients: correlation with complications and societal costs. Spine J. 2014;14(1):31–8.

    Article  PubMed  Google Scholar 

  78. Shen Y, Silverstein JC, Roth S. In-hospital complications and mortality after elective spinal fusion surgery in the United States: a study of the nationwide inpatient sample from 2001 to 2005. J Neurosurg Anesthesiol. 2009;21(1):21–30.

    Article  PubMed  Google Scholar 

  79. Howe CR, Agel J, Lee MJ, Bransford RJ, Wagner TA, Bellabarba C, et al. The morbidity and mortality of fusions from the thoracic spine to the pelvis in the adult population. Spine. 2011;36(17):1397–401.

    Article  PubMed  Google Scholar 

  80. Lovy AJ, Guzman JZ, Skovrlj B, Cho SK, Hecht AC, Qureshi SA. Prevalence, comorbidities, and risk of perioperative complications in human immunodeficiency virus-positive patients undergoing cervical spine surgery. Spine. 2015;40(21):1128.

    Article  Google Scholar 

  81. Fitz-Henry J. The ASA classification and peri-operative risk. Ann R Coll Surg Engl. 2011;93(3):185–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Somani S, Capua JD, Kim JS, Phan K, Lee NJ, Kothari P, et al. ASA classification as a risk stratification tool in adult spinal deformity surgery: a study of 5805 patients. Global Spine J. 2017;7(8):719–26.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pugely AJ, Martin CT, Gao Y, Ilgenfritz R, Weinstein SL. The incidence and risk factors for short-term morbidity and mortality in pediatric deformity spinal surgery: an analysis of the NSQIP pediatric database. Spine. 2014;39(15):1225–34.

    Article  PubMed  Google Scholar 

  84. Phan K, Kim JS, Lee NJ, Kothari P, Cho SK. Relationship between ASA scores and 30-day readmissions in patients undergoing anterior cervical discectomy and fusion. Spine. 2017;42(2):85–91.

    Article  PubMed  Google Scholar 

  85. Bilimoria KY, Liu Y, Paruch JL, Zhou L, Kmiecik TE, Ko CY, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J Am Coll Surg. 2013;217(5):3.

    Article  Google Scholar 

  86. Wang X, Hu Y, Zhao B, Su Y. Predictive validity of the ACS-NSQIP surgical risk calculator in geriatric patients undergoing lumbar surgery. Medicine (Baltimore). 2017;96(43):e8416.

    Article  Google Scholar 

  87. Veeravagu A, Li A, Swinney C, Tian L, Moraff A, Azad T, et al. Predicting complication risk in spine surgery: a prospective analysis of a novel risk assessment tool. J Neurosurg Spine. 2017;27(1):81–91.

    Article  PubMed  Google Scholar 

  88. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489–95.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M157.

    Article  Google Scholar 

  90. De la Garza Ramos R, Goodwin CR, Jain A, Abu-Bonsrah N, Fisher CG, Bettegowda C, et al. Development of a metastatic spinal tumor frailty index (MSTFI) using a nationwide database and its association with inpatient morbidity, mortality, and length of stay after spine surgery. World Neurosurg. 2016;95:555.e4.

    Google Scholar 

  91. Ahmed AK, Goodwin CR, de la Garza-Ramos R, Kim RC, Abu-Bonsrah N, Xu R, et al. Predicting short-term outcome after surgery for primary spinal tumors based on patient frailty. World Neurosurg. 2017;108:393–8.

    Article  PubMed  Google Scholar 

  92. Leven DM, Lee NJ, Kothari P, Steinberger J, Guzman J, Skovrlj B, et al. Frailty index is a significant predictor of complications and mortality after surgery for adult spinal deformity. Spine. 2016;41(23):E1401.

    Article  Google Scholar 

  93. Eamer GJ, Clement F, Pederson JL, Churchill TA, Khadaroo RG. Analysis of postdischarge costs following emergent general surgery in elderly patients. Can J Surg. 2018;61(1):19–27.

    Article  PubMed  Google Scholar 

  94. Kua J, Ramason R, Rajamoney G, Chong MS. Which frailty measure is a good predictor of early post-operative complications in elderly hip fracture patients? Arch Orthop Trauma Surg. 2016;136(5):639–47.

    Article  PubMed  Google Scholar 

  95. Reid DBC, Daniels AH, Ailon T, Miller E, Sciubba DM, Smith JS, et al. Frailty and health-related quality of life improvement following adult spinal deformity surgery. World Neurosurg. 2018;112:e548–54.

    Article  PubMed  Google Scholar 

  96. Miller EK, Neuman BJ, Jain A, Daniels AH, Ailon T, Sciubba DM, et al. An assessment of frailty as a tool for risk stratification in adult spinal deformity surgery. Neurosurg Focus. 2017;43(6):E3.

    Article  PubMed  Google Scholar 

  97. Miller EK, Ailon T, Neuman BJ, Klineberg EO, Mundis GM, Sciubba DM, et al. Assessment of a novel adult cervical deformity frailty index as a component of preoperative risk stratification. World Neurosurg. 2018;109:e806.

    Article  Google Scholar 

  98. Oh T, Scheer JK, Smith JS, Hostin R, Robinson C, Gum JL, et al. Potential of predictive computer models for preoperative patient selection to enhance overall quality-adjusted life years gained at 2-year follow-up: a simulation in 234 patients with adult spinal deformity. Neurosurg Focus. 2017;43(6):E2.

    Article  PubMed  Google Scholar 

  99. Iyer S, Klineberg EO, Zebala LP, Kelly MP, Hart RA, Gupta MC, et al. Dural tears in adult deformity surgery: incidence, risk factors, and outcomes. Global Spine J. 2018;8(1):25–31.

    Article  PubMed  Google Scholar 

  100. Sato S, Yagi M, Machida M, Yasuda A, Konomi T, Miyake A, et al. Reoperation rate and risk factors of elective spinal surgery for degenerative spondylolisthesis: minimum 5-year follow-up. Spine J. 2015;15(7):1536–44.

    Article  PubMed  Google Scholar 

  101. Onyekwelu I, Glassman SD, Asher AL, Shaffrey CI, Mummaneni PV, Carreon LY. Impact of obesity on complications and outcomes: a comparison of fusion and nonfusion lumbar spine surgery. J Neurosurg Spine. 2017;26(2):158–62.

    Article  PubMed  Google Scholar 

  102. Pereira BJ, de Holanda CVM, Ribeiro CA, de Moura SM, de Carvalho Galvão PE, Quidute BSQ, et al. Impact of body mass index in spinal surgery for degenerative lumbar spine disease. Clin Neurol Neurosurg. 2014;127:112–5.

    Article  PubMed  Google Scholar 

  103. Patel N, Bagan B, Vadera S, Maltenfort MG, Deutsch H, Vaccaro AR, et al. Obesity and spine surgery: relation to perioperative complications. J Neurosurg Spine. 2007;6(4):291–7.

    Article  PubMed  Google Scholar 

  104. Leckie S, Yoon ST, Isaacs R, Radcliff K, Fessler R, Haid R, et al. Perioperative complications of cervical spine surgery: analysis of a prospectively gathered database through the Association for Collaborative Spinal Research. Global Spine J. 2016;6(7):640–9.

    Article  PubMed  Google Scholar 

  105. Ishikura H, Ogihara S, Oka H, Maruyama T, Inanami H, Miyoshi K, et al. Risk factors for incidental durotomy during posterior open spine surgery for degenerative diseases in adults: a multicenter observational study. PLoS One. 2017;12(11):e0188038.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Passias PG, Poorman GW, Jalai CM, Line B, Diebo B, Park P, et al. Outcomes of open staged corrective surgery in the setting of adult spinal deformity. Spine J. 2017;17(8):1091–9.

    Article  PubMed  Google Scholar 

  107. ter Gunne P, Albert F, van Laarhoven CJHM, Cohen DB. Surgical site infection after osteotomy of the adult spine: does type of osteotomy matter? Spine J. 2010;10(5):410–6.

    Article  Google Scholar 

  108. Sidhu GS, Henkelman E, Vaccaro AR, Albert TJ, Hilibrand A, Anderson DG, et al. Minimally invasive versus open posterior lumbar interbody fusion: a systematic review. Clin Orthop Relat Res. 2014;472(6):1792–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jin-Tao Q, Yu T, Mei W, Xu-Dong T, Tian-Jian Z, Guo-Hua S, et al. Comparison of MIS vs. open PLIF/TLIF with regard to clinical improvement, fusion rate, and incidence of major complication: a meta-analysis. Eur Spine J. 2015;24(5):1058–65.

    Article  PubMed  Google Scholar 

  110. Xie Q, Zhang J, Lu F, Wu H, Chen Z, Jian F. Minimally invasive versus open Transforaminal lumbar Interbody fusion in obese patients: a meta-analysis. BMC Musculoskelet Disord. 2018;19(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Khan NR, Clark AJ, Lee SL, Venable GT, Rossi NB, Foley KT. Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery. 2015;77(6):874; discussion 874.

    Article  PubMed  Google Scholar 

  112. Lubelski D, Mihalovich KE, Skelly AC, Fehlings MG, Harrop JS, Mummaneni PV, et al. Is minimal access spine surgery more cost-effective than conventional spine surgery? Spine. 2014;39(22 Suppl 1):65.

    Article  Google Scholar 

  113. Phan K, Rao PJ, Kam AC, Mobbs RJ. Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J. 2015;24(5):1017–30.

    Article  PubMed  Google Scholar 

  114. McGirt MJ, Parker SL, Lerner J, Engelhart L, Knight T, Wang MY. Comparative analysis of perioperative surgical site infection after minimally invasive versus open posterior/transforaminal lumbar interbody fusion: analysis of hospital billing and discharge data from 5170 patients. J Neurosurg Spine. 2011;14(6):771–8.

    Article  PubMed  Google Scholar 

  115. Mirza SK, Deyo RA, Heagerty PJ, Turner JA, Lee LA, Goodkin R. Towards standardized measurement of adverse events in spine surgery: conceptual model and pilot evaluation. BMC Musculoskelet Disord. 2006;7(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Cizik AM, Lee MJ, Martin BI, Bransford RJ, Bellabarba C, Chapman JR, et al. Using the spine surgical invasiveness index to identify risk of surgical site infection: a multivariate analysis. J Bone Joint Surg Am. 2012;94(4):335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lee MJ, Cizik AM, Hamilton D, Chapman JR. Predicting medical complications after spine surgery: a validated model using a prospective surgical registry. Spine J. 2014;14(2):291–9.

    Article  PubMed  Google Scholar 

  118. Spratt KF, Keller TS, Szpalski M, Vandeputte K, Gunzburg R. A predictive model for outcome after conservative decompression surgery for lumbar spinal stenosis. Eur Spine J. 2004;13(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  119. Daubs MD, Hung M, Adams JR, Patel AA, Lawrence BD, Neese AM, et al. Clinical predictors of psychological distress in patients presenting for evaluation of a spinal disorder. Spine J. 2014;14(9):1978–83.

    Article  PubMed  Google Scholar 

  120. Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR. Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis: clinical article. J Neurosurg Spine. 2014;20(3):300–5.

    Article  PubMed  Google Scholar 

Suggested Reading

  • Bekelis K, Desai A, Bakhoum SF, Missios S. A predictive model of complications after spine surgery: the National Surgical Quality Improvement Program (NSQIP) 2005–2010. Spine J. 2014;14(7):1247–55.

    Article  PubMed  Google Scholar 

  • Neuman BJ, Ailon T, Scheer JK, Klineberg E, Sciubba DM, Jain A, et al. Development and validation of a novel adult spinal deformity surgical invasiveness score: analysis of 464 patients. Neurosurgery. 2017;82:847–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Ames .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pennington, Z., Zygourakis, C.C., Ames, C.P. (2019). Risk Adjustment Methodologies. In: Ratliff, J., Albert, T., Cheng, J., Knightly, J. (eds) Quality Spine Care. Springer, Cham. https://doi.org/10.1007/978-3-319-97990-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97990-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97989-2

  • Online ISBN: 978-3-319-97990-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics