Advertisement

LOFAR HBA Observations of NGC 6251

  • Thérèse CantwellEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter I present total intensity and polarised intensity observations of the nearby giant radio galaxy NGC 6251 with LOFAR HBA. NGC 6251 is a giant radio galaxy with a borderline FRI/FRII morphology. The main jet and lobe aregma centre brightened like an FRI however there is a hot spot or ‘warm spot’ in the lobe suggestive of an FRII. In contrast the counter jet and lobe are edge brightened with another hot spot in the southern lobe. The radio power at 178 MHz is \(P_\mathrm{178 MHz}\approx 1.4\times 10^{25}\) W Hz\(^{-1}\) (Waggett et al. 1977) which is near the 178 MHz boundary between FRI and FRII, \(P_\mathrm{178MHz}\approx 2\times 10^{25}h_{50}^{-2}\) W Hz\(^{-1}\) or \(P_\mathrm{178MHz}\approx 1\times 10^{25}h_{70}^{-2}\) W Hz\(^{-1}\) (Fanaroff and Riley 1974). The images presented in this chapter are the highest sensitivity and resolution images of NGC 6251 at these frequencies to date. I will also present the first detailed spectral index maps of the source at such low frequencies.

References

  1. Abdo AA, Ackermann M, Ajello M, Allafort A, Antolini E, Atwood WB, Axelsson M, Baldini L, Ballet J, Barbiellini G et al (2010) Fermi large area telescope first source catalog. ApJS 188:405–436.  https://doi.org/10.1088/0067-0049/188/2/405ADSCrossRefGoogle Scholar
  2. Alexander P, Leahy JP (1987) Ageing and speeds in a representative sample of 21 classical double radio sources. MNRAS 225:1–26.  https://doi.org/10.1093/mnras/225.1.1ADSCrossRefGoogle Scholar
  3. Bhatnagar S, Cornwell TJ, Golap K, Uson JM (2008) Correcting direction-dependent gains in the deconvolution of radio interferometric images. A&A 487:419–429.  https://doi.org/10.1051/0004-6361:20079284ADSCrossRefGoogle Scholar
  4. Brentjens MA, de Bruyn AG (2005) 441:1217–1228.  https://doi.org/10.1051/0004-6361:20052990
  5. Chen R, Peng B, Strom RG, Wei J (2011) Group galaxies around giant radio galaxy NGC 6251. MNRAS 412:2433–2444.  https://doi.org/10.1111/j.1365-2966.2010.18064.xADSCrossRefGoogle Scholar
  6. Cho J, Ryu D (2009) Characteristic lengths of magnetic field in magnetohydrodynamic turbulence. 705:L90–L94.  https://doi.org/10.1088/0004-637X/705/1/L90
  7. Condon JJ, Cotton WD, Greisen EW, Yin QF, Perley RA, Taylor GB, Broderick JJ (1998b) The NRAO VLA sky survey. AJ 115:1693–1716.  https://doi.org/10.1086/300337ADSCrossRefGoogle Scholar
  8. Croston JH, Hardcastle MJ, Birkinshaw M, Worrall DM, Laing RA (2008) An XMM-Newton study of the environments, particle content and impact of low-power radio galaxies. MNRAS 386:1709–1728.  https://doi.org/10.1111/j.1365-2966.2008.13162.xADSCrossRefGoogle Scholar
  9. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83:191–198.  https://doi.org/10.1007/s00190-008-0300-3ADSCrossRefGoogle Scholar
  10. Evans DA, Hardcastle MJ, Croston JH, Worrall DM, Birkinshaw M (2005) Chandra and XMM-Newton observations of NGC 6251. MNRAS 359:363–382.  https://doi.org/10.1111/j.1365-2966.2005.08900.xADSCrossRefGoogle Scholar
  11. Fanaroff BL, Riley JM (1974) The morphology of extragalactic radio sources of high and low luminosity. MNRAS 167:31P–36P.  https://doi.org/10.1093/mnras/167.1.31PADSCrossRefGoogle Scholar
  12. Farnsworth D, Rudnick L, Brown S (2011) Integrated polarization of sources at \(\lambda \)\(\sim \) 1 m and new rotation measure ambiguities. AJ 141:191.  https://doi.org/10.1088/0004-6256/141/6/191
  13. Guidetti D, Laing RA, Murgia M, Govoni F, Gregorini L, Parma P (2010) Structure of the magnetoionic medium around the Fanaroff-Riley class I radio galaxy 3C 449. A&A 514:A50.  https://doi.org/10.1051/0004-6361/200913872ADSCrossRefGoogle Scholar
  14. Hardcastle MJ, Gürkan G, van Weeren RJ, Williams WL, Best PN, de Gasperin F, Rafferty DA, Read SC, Sabater J, Shimwell TW, Smith DJB, Tasse C, Bourne N, Brienza M, Brüggen M, Brunetti G, Chyy KT, Conway J, Dunne L, Eales SA, Maddox SJ, Jarvis MJ, Mahony EK, Morganti R, Prandoni I, Röttgering HJA, Valiante E, White GJ (2016) LOFAR/H-ATLAS: A deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field. ArXiv e-printsGoogle Scholar
  15. Hardcastle MJ, Birkinshaw M, Worrall DM (1998) Magnetic field strengths in the hotspots of 3C 33 and 111. MNRAS 294:615.  https://doi.org/10.1046/j.1365-8711.1998.01159.xADSCrossRefGoogle Scholar
  16. Heald GH, Pizzo RF, Orrú E, Breton RP, Carbone D, Ferrari C, Hardcastle MJ, Jurusik W, Macario G, Mulcahy D, Rafferty D, Asgekar A, Brentjens M, Fallows RA, Frieswijk W, Toribio MC, Adebahr B, Arts M, Bell MR, Bonafede A, Bray J, Broderick J, Cantwell T, Carroll P, Cendes Y, Clarke AO, Croston J, Daiboo S, de Gasperin F, Gregson J, Harwood J, Hassall T, Heesen V, Horneffer A, van der Horst AJ, Iacobelli M, Jelić V, Jones D, Kant D, Kokotanekov G, Martin P, McKean JP, Morabito LK, Nikiel-Wroczyński B, Offringa A, Pandey VN, Pandey-Pommier M, Pietka M, Pratley L, Riseley C, Rowlinson A, Sabater J, Scaife AMM, Scheers LHA, Sendlinger K, Shulevski A, Sipior M, Sobey C, Stewart AJ, Stroe A, Swinbank J, Tasse C, Trüstedt J, Varenius E, van Velzen S, Vilchez N, van Weeren RJ, Wijnholds S, Williams WL, de Bruyn AG, Nijboer R, Wise M, Alexov A, Anderson J, Avruch IM, Beck R, Bell ME, van Bemmel I, Bentum MJ, Bernardi G, Best P, Breitling F, Brouw WN, Brüggen M, Butcher HR, Ciardi B, Conway JE, de Geus E, de Jong A, de Vos M, Deller A, Dettmar RJ, Duscha S, Eislöffel J, Engels D, Falcke H, Fender R, Garrett MA, Grießmeier J, Gunst AW, Hamaker JP, Hessels JWT, Hoeft M, Hörandel J, Holties HA, Intema H, Jackson NJ, Jütte E, Karastergiou A, Klijn WFA, Kondratiev VI, Koopmans LVE, Kuniyoshi M, Kuper G, Law C, van Leeuwen J, Loose M, Maat P, Markoff S, McFadden R, McKay-Bukowski D, Mevius M, Miller-Jones JCA, Morganti R, Munk H, Nelles A, Noordam JE, Norden MJ, Paas H, Polatidis AG, Reich W, Renting A, Röttgering H, Schoenmakers A, Schwarz D, Sluman J, Smirnov O, Stappers BW, Steinmetz M, Tagger M, Tang Y, ter Veen S, Thoudam S, Vermeulen R, Vocks C, Vogt C, Wijers RAMJ, Wucknitz O, Yatawatta S, Zarka P (2015) The LOFAR Multifrequency Snapshot Sky Survey (MSSS). I. Survey description and first results. A&A 582:A123.  https://doi.org/10.1051/0004-6361/201425210
  17. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795.  https://doi.org/10.1080/01621459.1995.10476572
  18. Laing RA, Canvin JR, Cotton WD, Bridle AH (2006) Multifrequency observations of the jets in the radio galaxy NGC315. MNRAS 368:48–64.  https://doi.org/10.1111/j.1365-2966.2006.10099.xADSCrossRefGoogle Scholar
  19. Laing RA, Bridle AH, Parma P, Feretti L, Giovannini G, Murgia M, Perley RA (2008) Multifrequency VLA observations of the FR I radio galaxy 3C 31: morphology, spectrum and magnetic field. MNRAS 386:657–672.  https://doi.org/10.1111/j.1365-2966.2008.13091.xADSCrossRefGoogle Scholar
  20. Lane WM, Cotton WD, Helmboldt JF, Kassim NE (2012) VLSS redux: software improvements applied to the very large array low-frequency sky survey. Radio Sci 47.  https://doi.org/10.1029/2011RS004941. (RS0K04)
  21. Lara L, Giovannini G, Cotton WD, Feretti L, Marcaide JM, Márquez I, Venturi T (2004) A new sample of large angular size radio galaxies. III. Statistics and evolution of the grown population. A&A 421:899–911.  https://doi.org/10.1051/0004-6361:20035676ADSCrossRefGoogle Scholar
  22. Lawler JM, Dennison B (1982) On intracluster Faraday rotation II—statistical analysis. ApJ 252:81–91.  https://doi.org/10.1086/159536ADSCrossRefGoogle Scholar
  23. Mack KH, Klein U, O’Dea CP, Willis AG (1997) Multi-frequency radio continuum mapping of giant radio galaxies. A&AS 123.  https://doi.org/10.1051/aas:1997166
  24. Mack KH, Klein U, O’Dea CP, Willis AG, Saripalli L (1998) Spectral indices, particle ages, and the ambient medium of giant radio galaxies. A&A 329:431–442ADSGoogle Scholar
  25. Malarecki JM, Jones DH, Saripalli L, Staveley-Smith L, Subrahmanyan R (2015) Giant radio galaxies–II. Tracers of large-scale structure. MNRAS 449:955–986.  https://doi.org/10.1093/mnras/stv273ADSCrossRefGoogle Scholar
  26. Nolan PL, Abdo AA, Ackermann M, Ajello M, Allafort A, Antolini E, Atwood WB, Axelsson M, Baldini L, Ballet J et al (2012) Fermi large area telescope second source catalog. ApJS 199:31.  https://doi.org/10.1088/0067-0049/199/2/31ADSCrossRefGoogle Scholar
  27. Offringa AR, van de Gronde JJ, Roerdink JBTM (2012) A morphological algorithm for improved radio-frequency interference detection. A&A 539Google Scholar
  28. Oppermann N, Junklewitz H, Greiner M, Enßlin TA, Akahori T, Carretti E, Gaensler BM, Goobar A, Harvey-Smith L, Johnston-Hollitt M, Pratley L, Schnitzeler DHFM, Stil JM, Vacca V (2015) 575:A118.  https://doi.org/10.1051/0004-6361/201423995
  29. Perley RA, Butler BJ (2013) An accurate flux density scale from 1 to 50 GHz. ApJS 204:19.  https://doi.org/10.1088/0067-0049/204/2/19ADSCrossRefGoogle Scholar
  30. Perley RA, Bridle AH, Willis AG (1984) High-resolution VLA observations of the radio jet in NGC 6251. ApJS 54:291–334.  https://doi.org/10.1086/190931ADSCrossRefGoogle Scholar
  31. Pirya A, Saikia DJ, Singh M, Chandola HC (2012) A study of the environments of large radio galaxies using SDSS. MNRAS 426:758–763.  https://doi.org/10.1111/j.1365-2966.2012.21656.xADSCrossRefGoogle Scholar
  32. Saunders R, Baldwin JE, Pooley GG, Warner PJ (1981) The radio jet in NGC 6251. MNRAS 197:287–300.  https://doi.org/10.1093/mnras/197.2.287ADSCrossRefGoogle Scholar
  33. Scaife AMM, Heald GH (2012) A broad-band flux scale for low-frequency radio telescopes. MNRAS 423:L30–L34.  https://doi.org/10.1111/j.1745-3933.2012.01251.xADSCrossRefGoogle Scholar
  34. Schoenmakers AP, Mack KH, de Bruyn AG, Röttgering HJA, Klein U, van der Laan H (2000) A new sample of giant radio galaxies from the WENSS survey–II. A multi-frequency radio study of a complete sample: properties of the radio lobes and their environment. A&As 146:293–322.  https://doi.org/10.1051/aas:2000267ADSCrossRefGoogle Scholar
  35. Sotomayor-Beltran C, Sobey C, Hessels JWT, de Bruyn G, Noutsos A, Alexov A, Anderson J, Asgekar A, Avruch IM, Beck R, Bell ME, Bell MR, Bentum MJ, Bernardi G, Best P, Birzan L, Bonafede A, Breitling F, Broderick J, Brouw WN, Brüggen M, Ciardi B, de Gasperin F, Dettmar RJ, van Duin A, Duscha S, Eislöffel J, Falcke H, Fallows RA, Fender R, Ferrari C, Frieswijk W, Garrett MA, Grießmeier J, Grit T, Gunst AW, Hassall TE, Heald G, Hoeft M, Horneffer A, Iacobelli M, Juette E, Karastergiou A, Keane E, Kohler J, Kramer M, Kondratiev VI, Koopmans LVE, Kuniyoshi M, Kuper G, van Leeuwen J, Maat P, Macario G, Markoff S, McKean JP, Mulcahy DD, Munk H, Orru E, Paas H, Pandey-Pommier M, Pilia M, Pizzo R, Polatidis AG, Reich W, Röttgering H, Serylak M, Sluman J, Stappers BW, Tagger M, Tang Y, Tasse C, ter Veen S, Vermeulen R, van Weeren RJ, Wijers RAMJ, Wijnholds SJ, Wise MW, Wucknitz O, Yatawatta S, Zarka P (2013) Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes. A&A 552:A58.  https://doi.org/10.1051/0004-6361/201220728ADSCrossRefGoogle Scholar
  36. Stoffel H, Wielebinski R (1978) Observations of the very large galaxies NGC 315 and NGC 6251 at 11.1 CM. A&A 68:307–309ADSGoogle Scholar
  37. Sun XH, Rudnick L, Akahori T, Anderson CS, Bell MR, Bray JD, Farnes JS, Ideguchi S, Kumazaki K, O’Brien T, O’Sullivan SP, Scaife AMM, Stepanov R, Stil J, Takahashi K, van Weeren RJ, Wolleben M (2015) Comparison of algorithms for determination of rotation measure and faraday structure. I. 1100–1400 MHz. AJ 149:60.  https://doi.org/10.1088/0004-6256/149/2/60
  38. Takeuchi Y, Kataoka J, Stawarz Ł, Takahashi Y, Maeda K, Nakamori T, Cheung CC, Celotti A, Tanaka Y, Takahashi T (2012) Suzaku X-ray imaging of the extended lobe in the giant radio galaxy NGC 6251 associated with the Fermi-LAT source 2FGL J1629.4+8236. ApJ 749:66.  https://doi.org/10.1088/0004-637X/749/1/66
  39. Tasse C, van der Tol S, van Zwieten J, van Diepen G, Bhatnagar S (2013) Applying full polarization A-Projection to very wide field of view instruments: An imager for LOFAR. A&A 553:A105.  https://doi.org/10.1051/0004-6361/201220882ADSCrossRefGoogle Scholar
  40. van Weeren RJ, Williams WL, Hardcastle MJ, Shimwell TW, Rafferty DA, Sabater J, Heald G, Sridhar SS, Dijkema TJ, Brunetti G, Brüggen M, Andrade-Santos F, Ogrean GA, Röttgering HJA, Dawson WA, Forman WR, de Gasperin F, Jones C, Miley GK, Rudnick L, Sarazin CL, Bonafede A, Best PN, Bîrzan L, Cassano R, Chyy KT, Croston JH, Ensslin T, Ferrari C, Hoeft M, Horellou C, Jarvis MJ, Kraft RP, Mevius M, Intema HT, Murray SS, Orrú E, Pizzo R, Simionescu A, Stroe A, van der Tol S, White GJ (2016b) LOFAR facet calibration. ApJS 223:2.  https://doi.org/10.3847/0067-0049/223/1/2ADSCrossRefGoogle Scholar
  41. Waggett PC, Warner PJ, Baldwin JE (1977) NGC 6251, a very large radio galaxy with an exceptional jet. MNRAS 181:465–474.  https://doi.org/10.1093/mnras/181.3.465ADSCrossRefGoogle Scholar
  42. Willis AG, Wilson AS, Strom RG (1978) Polarization in the very large radio galaxy NGC 6251 at 610 MHz. A&A 66:L1–L4ADSGoogle Scholar
  43. Wright EL (2006) A cosmology calculator for the world wide web. PASP 118:1711–1715.  https://doi.org/10.1086/510102ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Jodrell Bank Centre for Astrophysics, School of Physics and AstronomyThe University of ManchesterManchesterUK

Personalised recommendations