Advertisement

Techniques and Data Calibration

  • Thérèse CantwellEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The resolution of a radio telescope is determined by the equation \(\theta =1.22\frac{\lambda }{D}\), where \(\lambda \) is the observing wavelength and D is the diameter of the dish. Increasing the resolution of single dish radio astronomy requires the construction of larger and larger dishes, which quickly becomes both impractical and expensive.

References

  1. Nan R, Li D, Jin C, Wang Q, Zhu L, Zhu W, Zhang H, Yue Y, Qian L (2011) The five-hundred aperture spherical radio telescope (fast) project. Int J Mod Phys D 20:989–1024.  https://doi.org/10.1142/S0218271811019335. arXiv:1105.3794ADSCrossRefGoogle Scholar
  2. Thompson AR, Moran JM, Swenson GW Jr (2017) Interferometry and synthesis in radio astronomy, 3rd edn.  https://doi.org/10.1007/978-3-319-44431-4
  3. Hamaker JP, Bregman JD, Sault RJ (1996) Understanding radio polarimetry. I. Mathematical foundations. A&AS 117:137–147ADSCrossRefGoogle Scholar
  4. Smirnov OM (2011a) Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism. A&A 527:A106.  https://doi.org/10.1051/0004-6361/201016082. arXiv:1101.1764ADSCrossRefGoogle Scholar
  5. Smirnov OM (2011b) Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects. A&A 527:A107.  https://doi.org/10.1051/0004-6361/201116434. arXiv:1101.1765ADSCrossRefGoogle Scholar
  6. Smirnov OM (2011c) Revisiting the radio interferometer measurement equation. III. Addressing direction-dependent effects in 21 cm WSRT observations of 3C 147. A&A 527:A108.  https://doi.org/10.1051/0004-6361/201116435. arXiv:1101.1768
  7. Smirnov OM (2011d) Revisiting the radio interferometer measurement equation. IV. A generalized tensor formalism. A&A 531:A159.  https://doi.org/10.1051/0004-6361/201116764. arXiv:1106.0579ADSCrossRefGoogle Scholar
  8. Intema HT (2014) SPAM: a data reduction recipe for high-resolution, low-frequency radio-interferometric observations. In: Astronomical Society of India Conference Series, Astronomical Society of India Conference Series, vol 13. arXiv:1402.4889
  9. Smirnov OM, Noordam JE (2004) The LOFAR global sky model: some design challenges. In: Ochsenbein F, Allen MG, Egret D (eds) Astronomical data analysis software and systems (ADASS) XIII, Astronomical Society of the Pacific Conference Series, vol 314, p 18Google Scholar
  10. van Weeren RJ, Williams WL, Hardcastle MJ, Shimwell TW, Rafferty DA, Sabater J, Heald G, Sridhar SS, Dijkema TJ, Brunetti G, Brüggen M, Andrade-Santos F, Ogrean GA, Röttgering HJA, Dawson WA, Forman WR, de Gasperin F, Jones C, Miley GK, Rudnick L, Sarazin CL, Bonafede A, Best PN, Bîrzan L, Cassano R, Chyy KT, Croston JH, Ensslin T, Ferrari C, Hoeft M, Horellou C, Jarvis MJ, Kraft RP, Mevius M, Intema HT, Murray SS, Orrú E, Pizzo R, Simionescu A, Stroe A, van der Tol S, White GJ (2016b) LOFAR facet calibration. ApJS 223:2.  https://doi.org/10.3847/0067-0049/223/1/2. arXiv:1601.05422
  11. Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. A&AS 15:417ADSGoogle Scholar
  12. Schwab FR (1984) Relaxing the isoplanatism assumption in self-calibration; Applications to low-frequency radio interferometry. AJ 89:1076–1081.  https://doi.org/10.1086/113605
  13. Wakker BP, Schwarz UJ (1988) The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry. A&A 200:312–322ADSGoogle Scholar
  14. Cornwell TJ (2008) Multiscale CLEAN deconvolution of radio synthesis images. IEEE J Sel Top Signal Process 2:793–801.  https://doi.org/10.1109/JSTSP.2008.2006388ADSCrossRefGoogle Scholar
  15. Cornwell TJ, Golap K, Bhatnagar S (2008) The noncoplanar baselines effect in radio interferometry: the w-projection algorithm. IEEE J Sel Top Signal Process 2:647–657.  https://doi.org/10.1109/JSTSP.2008.2005290. arXiv:0807.4161ADSCrossRefGoogle Scholar
  16. Burn BJ (1966) On the depolarization of discrete radio sources by Faraday dispersion. MNRAS 133:67.  https://doi.org/10.1093/mnras/133.1.67ADSCrossRefGoogle Scholar
  17. Brentjens MA, de Bruyn AG (2005) Faraday rotation measure synthesis. A&A 441:1217–1228.  https://doi.org/10.1051/0004-6361:20052990. arXiv:astro-ph/0507349ADSCrossRefGoogle Scholar
  18. Sun XH, Rudnick L, Akahori T, Anderson CS, Bell MR, Bray JD, Farnes JS, Ideguchi S, Kumazaki K, O’Brien T, O’Sullivan SP, Scaife AMM, Stepanov R, Stil J, Takahashi K, van Weeren RJ, Wolleben M (2015) Comparison of algorithms for determination of rotation measure and faraday structure. I. 1100–1400 MHz. AJ 149:60.  https://doi.org/10.1088/0004-6256/149/2/60. arXiv:1409.4151
  19. O’Sullivan SP, Gaensler BM, Lara-López MA, van Velzen S, Banfield JK, Farnes JS (2015) The magnetic field and polarization properties of radio galaxies in different accretion states. ApJ 806:83.  https://doi.org/10.1088/0004-637X/806/1/83. arXiv:1504.06679
  20. Swarup G, Ananthakrishnan S, Kapahi VK, Rao AP, Subrahmanya CR, Kulkarni VK (1991) The giant metre-wave radio telescope. Curr Sci 60(2):95Google Scholar
  21. van Haarlem MP, Wise MW, Gunst AW, Heald G, McKean JP, Hessels JWT, de Bruyn AG, Nijboer R, Swinbank J, Fallows R, Brentjens M, Nelles A, Beck R, Falcke H, Fender R, Hörandel J, Koopmans LVE, Mann G, Miley G, Röttgering H, Stappers BW, Wijers RAMJ, Zaroubi S, van den Akker M, Alexov A, Anderson J, Anderson K, van Ardenne A, Arts M, Asgekar A, Avruch IM, Batejat F, Bähren L, Bell ME, Bell MR, van Bemmel I, Bennema P, Bentum MJ, Bernardi G, Best P, Bîrzan L, Bonafede A, Boonstra AJ, Braun R, Bregman J, Breitling F, van de Brink RH, Broderick J, Broekema PC, Brouw WN, Brüggen M, Butcher HR, van Cappellen W, Ciardi B, Coenen T, Conway J, Coolen A, Corstanje A, Damstra S, Davies O, Deller AT, Dettmar RJ, van Diepen G, Dijkstra K, Donker P, Doorduin A, Dromer J, Drost M, van Duin A, Eislöffel J, van Enst J, Ferrari C, Frieswijk W, Gankema H, Garrett MA, de Gasperin F, Gerbers M, de Geus E, Grießmeier JM, Grit T, Gruppen P, Hamaker JP, Hassall T, Hoeft M, Holties HA, Horneffer A, van der Horst A, van Houwelingen A, Huijgen A, Iacobelli M, Intema H, Jackson N, Jelic V, de Jong A, Juette E, Kant D, Karastergiou A, Koers A, Kollen H, Kondratiev VI, Kooistra E, Koopman Y, Koster A, Kuniyoshi M, Kramer M, Kuper G, Lambropoulos P, Law C, van Leeuwen J, Lemaitre J, Loose M, Maat P, Macario G, Markoff S, Masters J, McFadden RA, McKay-Bukowski D, Meijering H, Meulman H, Mevius M, Middelberg E, Millenaar R, Miller-Jones JCA, Mohan RN, Mol JD, Morawietz J, Morganti R, Mulcahy DD, Mulder E, Munk H, Nieuwenhuis L, van Nieuwpoort R, Noordam JE, Norden M, Noutsos A, Offringa AR, Olofsson H, Omar A, Orrú E, Overeem R, Paas H, Pandey-Pommier M, Pandey VN, Pizzo R, Polatidis A, Rafferty D, Rawlings S, Reich W, de Reijer JP, Reitsma J, Renting GA, Riemers P, Rol E, Romein JW, Roosjen J, Ruiter M, Scaife A, van der Schaaf K, Scheers B, Schellart P, Schoenmakers A, Schoonderbeek G, Serylak M, Shulevski A, Sluman J, Smirnov O, Sobey C, Spreeuw H, Steinmetz M, Sterks CGM, Stiepel HJ, Stuurwold K, Tagger M, Tang Y, Tasse C, Thomas I, Thoudam S, Toribio MC, van der Tol B, Usov O, van Veelen M, van der Veen AJ, ter Veen S, Verbiest JPW, Vermeulen R, Vermaas N, Vocks C, Vogt C, de Vos M, van der Wal E, van Weeren R, Weggemans H, Weltevrede P, White S, Wijnholds SJ, Wilhelmsson T, Wucknitz O, Yatawatta S, Zarka P, Zensus A, van Zwieten J (2013) LOFAR: the low-frequency array. A&A 556:A2.  https://doi.org/10.1051/0004-6361/201220873. arXiv:1305.3550ADSCrossRefGoogle Scholar
  22. Thompson AR, Clark BG, Wade CM, Napier PJ (1980) The very large array. ApJS 44:151–167.  https://doi.org/10.1086/190688ADSCrossRefGoogle Scholar
  23. Napier PJ, Thompson AR, Ekers RD (1983) The very large array–design and performance of a modern synthesis radio telescope. IEEE Proc 71:1295–1320ADSCrossRefGoogle Scholar
  24. Perley RA, Chandler CJ, Butler BJ, Wrobel JM (2011) The expanded very large array: a new telescope for new science. ApJ 739:L1.  https://doi.org/10.1088/2041-8205/739/1/L1. arXiv:1106.0532

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Jodrell Bank Centre for Astrophysics, School of Physics and AstronomyThe University of ManchesterManchesterUK

Personalised recommendations