Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 221 Accesses

Abstract

The resolution of a radio telescope is determined by the equation \(\theta =1.22\frac{\lambda }{D}\), where \(\lambda \) is the observing wavelength and D is the diameter of the dish. Increasing the resolution of single dish radio astronomy requires the construction of larger and larger dishes, which quickly becomes both impractical and expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more information see www.ska.ac.za/science-engineering/kat-7/.

References

  • Nan R, Li D, Jin C, Wang Q, Zhu L, Zhu W, Zhang H, Yue Y, Qian L (2011) The five-hundred aperture spherical radio telescope (fast) project. Int J Mod Phys D 20:989–1024. https://doi.org/10.1142/S0218271811019335. arXiv:1105.3794

    Article  ADS  Google Scholar 

  • Thompson AR, Moran JM, Swenson GW Jr (2017) Interferometry and synthesis in radio astronomy, 3rd edn. https://doi.org/10.1007/978-3-319-44431-4

  • Hamaker JP, Bregman JD, Sault RJ (1996) Understanding radio polarimetry. I. Mathematical foundations. A&AS 117:137–147

    Article  ADS  Google Scholar 

  • Smirnov OM (2011a) Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism. A&A 527:A106. https://doi.org/10.1051/0004-6361/201016082. arXiv:1101.1764

    Article  ADS  Google Scholar 

  • Smirnov OM (2011b) Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects. A&A 527:A107. https://doi.org/10.1051/0004-6361/201116434. arXiv:1101.1765

    Article  ADS  Google Scholar 

  • Smirnov OM (2011c) Revisiting the radio interferometer measurement equation. III. Addressing direction-dependent effects in 21 cm WSRT observations of 3C 147. A&A 527:A108. https://doi.org/10.1051/0004-6361/201116435. arXiv:1101.1768

  • Smirnov OM (2011d) Revisiting the radio interferometer measurement equation. IV. A generalized tensor formalism. A&A 531:A159. https://doi.org/10.1051/0004-6361/201116764. arXiv:1106.0579

    Article  ADS  Google Scholar 

  • Intema HT (2014) SPAM: a data reduction recipe for high-resolution, low-frequency radio-interferometric observations. In: Astronomical Society of India Conference Series, Astronomical Society of India Conference Series, vol 13. arXiv:1402.4889

  • Smirnov OM, Noordam JE (2004) The LOFAR global sky model: some design challenges. In: Ochsenbein F, Allen MG, Egret D (eds) Astronomical data analysis software and systems (ADASS) XIII, Astronomical Society of the Pacific Conference Series, vol 314, p 18

    Google Scholar 

  • van Weeren RJ, Williams WL, Hardcastle MJ, Shimwell TW, Rafferty DA, Sabater J, Heald G, Sridhar SS, Dijkema TJ, Brunetti G, Brüggen M, Andrade-Santos F, Ogrean GA, Röttgering HJA, Dawson WA, Forman WR, de Gasperin F, Jones C, Miley GK, Rudnick L, Sarazin CL, Bonafede A, Best PN, Bîrzan L, Cassano R, Chyy KT, Croston JH, Ensslin T, Ferrari C, Hoeft M, Horellou C, Jarvis MJ, Kraft RP, Mevius M, Intema HT, Murray SS, Orrú E, Pizzo R, Simionescu A, Stroe A, van der Tol S, White GJ (2016b) LOFAR facet calibration. ApJS 223:2. https://doi.org/10.3847/0067-0049/223/1/2. arXiv:1601.05422

  • Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. A&AS 15:417

    ADS  Google Scholar 

  • Schwab FR (1984) Relaxing the isoplanatism assumption in self-calibration; Applications to low-frequency radio interferometry. AJ 89:1076–1081. https://doi.org/10.1086/113605

  • Wakker BP, Schwarz UJ (1988) The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry. A&A 200:312–322

    ADS  Google Scholar 

  • Cornwell TJ (2008) Multiscale CLEAN deconvolution of radio synthesis images. IEEE J Sel Top Signal Process 2:793–801. https://doi.org/10.1109/JSTSP.2008.2006388

    Article  ADS  Google Scholar 

  • Cornwell TJ, Golap K, Bhatnagar S (2008) The noncoplanar baselines effect in radio interferometry: the w-projection algorithm. IEEE J Sel Top Signal Process 2:647–657. https://doi.org/10.1109/JSTSP.2008.2005290. arXiv:0807.4161

    Article  ADS  Google Scholar 

  • Burn BJ (1966) On the depolarization of discrete radio sources by Faraday dispersion. MNRAS 133:67. https://doi.org/10.1093/mnras/133.1.67

    Article  ADS  Google Scholar 

  • Brentjens MA, de Bruyn AG (2005) Faraday rotation measure synthesis. A&A 441:1217–1228. https://doi.org/10.1051/0004-6361:20052990. arXiv:astro-ph/0507349

    Article  ADS  Google Scholar 

  • Sun XH, Rudnick L, Akahori T, Anderson CS, Bell MR, Bray JD, Farnes JS, Ideguchi S, Kumazaki K, O’Brien T, O’Sullivan SP, Scaife AMM, Stepanov R, Stil J, Takahashi K, van Weeren RJ, Wolleben M (2015) Comparison of algorithms for determination of rotation measure and faraday structure. I. 1100–1400 MHz. AJ 149:60. https://doi.org/10.1088/0004-6256/149/2/60. arXiv:1409.4151

  • O’Sullivan SP, Gaensler BM, Lara-López MA, van Velzen S, Banfield JK, Farnes JS (2015) The magnetic field and polarization properties of radio galaxies in different accretion states. ApJ 806:83. https://doi.org/10.1088/0004-637X/806/1/83. arXiv:1504.06679

  • Swarup G, Ananthakrishnan S, Kapahi VK, Rao AP, Subrahmanya CR, Kulkarni VK (1991) The giant metre-wave radio telescope. Curr Sci 60(2):95

    Google Scholar 

  • van Haarlem MP, Wise MW, Gunst AW, Heald G, McKean JP, Hessels JWT, de Bruyn AG, Nijboer R, Swinbank J, Fallows R, Brentjens M, Nelles A, Beck R, Falcke H, Fender R, Hörandel J, Koopmans LVE, Mann G, Miley G, Röttgering H, Stappers BW, Wijers RAMJ, Zaroubi S, van den Akker M, Alexov A, Anderson J, Anderson K, van Ardenne A, Arts M, Asgekar A, Avruch IM, Batejat F, Bähren L, Bell ME, Bell MR, van Bemmel I, Bennema P, Bentum MJ, Bernardi G, Best P, Bîrzan L, Bonafede A, Boonstra AJ, Braun R, Bregman J, Breitling F, van de Brink RH, Broderick J, Broekema PC, Brouw WN, Brüggen M, Butcher HR, van Cappellen W, Ciardi B, Coenen T, Conway J, Coolen A, Corstanje A, Damstra S, Davies O, Deller AT, Dettmar RJ, van Diepen G, Dijkstra K, Donker P, Doorduin A, Dromer J, Drost M, van Duin A, Eislöffel J, van Enst J, Ferrari C, Frieswijk W, Gankema H, Garrett MA, de Gasperin F, Gerbers M, de Geus E, Grießmeier JM, Grit T, Gruppen P, Hamaker JP, Hassall T, Hoeft M, Holties HA, Horneffer A, van der Horst A, van Houwelingen A, Huijgen A, Iacobelli M, Intema H, Jackson N, Jelic V, de Jong A, Juette E, Kant D, Karastergiou A, Koers A, Kollen H, Kondratiev VI, Kooistra E, Koopman Y, Koster A, Kuniyoshi M, Kramer M, Kuper G, Lambropoulos P, Law C, van Leeuwen J, Lemaitre J, Loose M, Maat P, Macario G, Markoff S, Masters J, McFadden RA, McKay-Bukowski D, Meijering H, Meulman H, Mevius M, Middelberg E, Millenaar R, Miller-Jones JCA, Mohan RN, Mol JD, Morawietz J, Morganti R, Mulcahy DD, Mulder E, Munk H, Nieuwenhuis L, van Nieuwpoort R, Noordam JE, Norden M, Noutsos A, Offringa AR, Olofsson H, Omar A, Orrú E, Overeem R, Paas H, Pandey-Pommier M, Pandey VN, Pizzo R, Polatidis A, Rafferty D, Rawlings S, Reich W, de Reijer JP, Reitsma J, Renting GA, Riemers P, Rol E, Romein JW, Roosjen J, Ruiter M, Scaife A, van der Schaaf K, Scheers B, Schellart P, Schoenmakers A, Schoonderbeek G, Serylak M, Shulevski A, Sluman J, Smirnov O, Sobey C, Spreeuw H, Steinmetz M, Sterks CGM, Stiepel HJ, Stuurwold K, Tagger M, Tang Y, Tasse C, Thomas I, Thoudam S, Toribio MC, van der Tol B, Usov O, van Veelen M, van der Veen AJ, ter Veen S, Verbiest JPW, Vermeulen R, Vermaas N, Vocks C, Vogt C, de Vos M, van der Wal E, van Weeren R, Weggemans H, Weltevrede P, White S, Wijnholds SJ, Wilhelmsson T, Wucknitz O, Yatawatta S, Zarka P, Zensus A, van Zwieten J (2013) LOFAR: the low-frequency array. A&A 556:A2. https://doi.org/10.1051/0004-6361/201220873. arXiv:1305.3550

    Article  ADS  Google Scholar 

  • Thompson AR, Clark BG, Wade CM, Napier PJ (1980) The very large array. ApJS 44:151–167. https://doi.org/10.1086/190688

    Article  ADS  Google Scholar 

  • Napier PJ, Thompson AR, Ekers RD (1983) The very large array–design and performance of a modern synthesis radio telescope. IEEE Proc 71:1295–1320

    Article  ADS  Google Scholar 

  • Perley RA, Chandler CJ, Butler BJ, Wrobel JM (2011) The expanded very large array: a new telescope for new science. ApJ 739:L1. https://doi.org/10.1088/2041-8205/739/1/L1. arXiv:1106.0532

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thérèse Cantwell .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cantwell, T. (2018). Techniques and Data Calibration. In: Low Frequency Radio Observations of Galaxy Clusters and Groups. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97976-2_2

Download citation

Publish with us

Policies and ethics