Advertisement

Introduction

  • Thérèse CantwellEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Galaxy clusters are the largest virialised structures in the Universe with typical masses of order 10\(^{15} M_{\odot }\). Most of this mass is composed of dark matter.

References

  1. Angel JRP, Stockman HS (1980) Optical and infrared polarization of active extragalactic objects. ARA&A 18:321–361.  https://doi.org/10.1146/annurev.aa.18.090180.001541ADSCrossRefGoogle Scholar
  2. Antonucci R (1993) Unified models for active galactic nuclei and quasars. ARA&A 31:473–521.  https://doi.org/10.1146/annurev.aa.31.090193.002353ADSCrossRefGoogle Scholar
  3. Baade W (1956) Polarization in the jet of Messier 87. ApJ 123:550–551.  https://doi.org/10.1086/146194ADSCrossRefGoogle Scholar
  4. Baade W, Minkowski R (1954) Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A. ApJ 119:206.  https://doi.org/10.1086/145812ADSCrossRefGoogle Scholar
  5. Best PN, Ker LM, Simpson C, Rigby EE, Sabater J (2014) The cosmic evolution of radio-AGN feedback to z = 1. MNRAS 445:955–969 arXiv:1409.0263ADSCrossRefGoogle Scholar
  6. Bîrzan L, McNamara BR, Nulsen PEJ, Carilli CL, Wise MW (2008) Radiative efficiency and content of extragalactic radio sources: toward a universal scaling relation between jet power and radio power. ApJ 686:859–880.  https://doi.org/10.1086/591416. arXiv:0806.1929ADSCrossRefGoogle Scholar
  7. Blasi P, Colafrancesco S (1999) Cosmic rays, radio halos and nonthermal X-ray emission in clusters of galaxies. Astropart Phys 12(3):169–183.  https://doi.org/10.1016/S0927-6505(99)00079-1. http://www.sciencedirect.com/science/article/pii/S0927650599000791
  8. Böhringer H, Pratt GW, Arnaud M, Borgani S, Croston JH, Ponman TJ, Ameglio S, Temple RF, Dolag K (2010) Substructure of the galaxy clusters in the REXCESS sample: observed statistics and comparison to numerical simulations. A&A 514:A32.  https://doi.org/10.1051/0004-6361/200913911. arXiv:0912.4667ADSCrossRefGoogle Scholar
  9. Bonafede A, Vazza F, Brüggen M, Murgia M, Govoni F, Feretti L, Giovannini G, Ogrean G (2013) Measurements and simulation of Faraday rotation across the Coma radio relic. MNRAS 433:3208–3226.  https://doi.org/10.1093/mnras/stt960. arXiv:1305.7228ADSCrossRefGoogle Scholar
  10. Bonafede A, Intema HT, Brüggen M, Girardi M, Nonino M, Kantharia N, van Weeren RJ, Röttgering HJA (2014) Evidence for particle re-acceleration in the radio relic in the galaxy cluster PLCKG287.0+32.9. ApJ 785:1.  https://doi.org/10.1088/0004-637X/785/1/1. arXiv:1402.1492
  11. Bower RG, Benson AJ, Malbon R, Helly JC, Frenk CS, Baugh CM, Cole S, Lacey CG (2006) Breaking the hierarchy of galaxy formation. MNRAS 370:645–655 arXiv:astro-ph/0511338ADSCrossRefGoogle Scholar
  12. Brüggen M, Bykov A, Ryu D, Röttgering H (2012) Magnetic fields, relativistic particles, and shock waves in cluster outskirts. Space Sci Rev 166:187–213.  https://doi.org/10.1007/s11214-011-9785-9. arXiv:1107.5223ADSCrossRefGoogle Scholar
  13. Brunetti G (2003) Modelling the non-thermal emission from galaxy clusters. In: Bowyer S, Hwang CY (eds) Matter and energy in clusters of galaxies, astronomical society of the pacific conference series, vol 301, p 349. arXiv:astro-ph/0208074
  14. Brunetti G (2004) Particle acceleration and non-thermal emission from galaxy clusters. J Korean Astron Soc 37:493–500.  https://doi.org/10.5303/JKAS.2004.37.5.493. arXiv:astro-ph/0412529CrossRefGoogle Scholar
  15. Brunetti G (2009) Constraining relativistic protons and magnetic fields in galaxy clusters through radio and \(\gamma \)-ray observations: the case of A2256. A&A 508:599–602.  https://doi.org/10.1051/0004-6361/200913177. arXiv:0909.3449ADSCrossRefGoogle Scholar
  16. Brunetti G, Jones TW (2014) Cosmic rays in galaxy clusters and their nonthermal emission. Int J Mod Phys D 23(04):1430007.  https://doi.org/10.1142/S0218271814300079. arXiv:1401.7519ADSCrossRefGoogle Scholar
  17. Brunetti G, Setti G, Feretti L, Giovannini G (2001) Particle reacceleration in the Coma cluster: radio properties and hard X-ray emission. MNRAS 320:365–378.  https://doi.org/10.1046/j.1365-8711.2001.03978.x. arXiv:astro-ph/0008518ADSCrossRefGoogle Scholar
  18. Brunetti G, Cassano R, Dolag K, Setti G (2009) On the evolution of giant radio halos and their connection with cluster mergers. A&A 507:661–669.  https://doi.org/10.1051/0004-6361/200912751. arXiv:0909.2343ADSCrossRefGoogle Scholar
  19. Brunetti G, Blasi P, Reimer O, Rudnick L, Bonafede A, Brown S (2012) Probing the origin of giant radio haloes through radio and \(\gamma \)-ray data: the case of the Coma cluster. MNRAS 426:956–968.  https://doi.org/10.1111/j.1365-2966.2012.21785.x. arXiv:1207.3025ADSCrossRefGoogle Scholar
  20. Buote DA, Tsai JC (1995) Quantifying the morphologies and dynamical evolution of galaxy clusters-I: the method. ApJ 452:522.  https://doi.org/10.1086/176326. arXiv:astro-ph/9502002ADSCrossRefGoogle Scholar
  21. Burbidge GR (1956) On synchrotron radiation from Messier 87. ApJ 124:416.  https://doi.org/10.1086/146237ADSCrossRefGoogle Scholar
  22. Burn BJ (1966) On the depolarization of discrete radio sources by Faraday dispersion. MNRAS 133:67.  https://doi.org/10.1093/mnras/133.1.67ADSCrossRefGoogle Scholar
  23. Carilli CL, Barthel PD (1996) Cygnus A. A&A Rev 7:1–54.  https://doi.org/10.1007/s001590050001
  24. Cassano R, Brunetti G (2005) Cluster mergers and non-thermal phenomena: a statistical magneto-turbulent model. MNRAS 357:1313–1329.  https://doi.org/10.1111/j.1365-2966.2005.08747.x. arXiv:astro-ph/0412475ADSCrossRefGoogle Scholar
  25. Cassano R, Ettori S, Giacintucci S, Brunetti G, Markevitch M, Venturi T, Gitti M (2010) On the connection between giant radio halos and cluster mergers. ApJ 721:L82–L85.  https://doi.org/10.1088/2041-8205/721/2/L82. arXiv:1008.3624ADSCrossRefGoogle Scholar
  26. Cassano R, Ettori S, Brunetti G, Giacintucci S, Pratt GW, Venturi T, Kale R, Dolag K, Markevitch M (2013) Revisiting scaling relations for giant radio halos in galaxy clusters. ApJ 777:141.  https://doi.org/10.1088/0004-637X/777/2/141. arXiv:1306.4379ADSCrossRefGoogle Scholar
  27. Cavagnolo KW, Donahue M, Voit GM, Sun M (2009) Intracluster medium entropy profiles for a Chandra archival sample of galaxy clusters. ApJS 182:12–32.  https://doi.org/10.1088/0067-0049/182/1/12. arXiv:0902.1802ADSCrossRefGoogle Scholar
  28. Cavagnolo KW, McNamara BR, Nulsen PEJ, Carilli CL, Jones C, Bîrzan L (2010) A relationship between AGN jet power and radio power. ApJ 720:1066–1072 arXiv:1006.5699ADSCrossRefGoogle Scholar
  29. Chen R, Peng B, Strom RG, Wei J (2011) Group galaxies around giant radio galaxy NGC 6251. MNRAS 412:2433–2444.  https://doi.org/10.1111/j.1365-2966.2010.18064.xADSCrossRefGoogle Scholar
  30. Chen R, Peng B, Strom RG, Wei J (2012) Galaxy group around giant radio galaxy NGC 315. MNRAS 420:2715–2726.  https://doi.org/10.1111/j.1365-2966.2011.20245.xADSCrossRefGoogle Scholar
  31. Clarke TE, Kronberg PP, Böhringer H (2001) A new radio-x-ray probe of galaxy cluster magnetic fields. ApJ 547:L111–L114.  https://doi.org/10.1086/318896. arXiv:astro-ph/0011281ADSCrossRefGoogle Scholar
  32. Colafrancesco S (1999) Cosmic Rays and Non-Thermal Emission in Galaxy Clusters. In: Boehringer H, Feretti L, Schuecker P (eds) Diffuse thermal and relativistic plasma in galaxy clusters, p 269. arXiv:astro-ph/9907329
  33. Croston JH, Hardcastle MJ (2014) The particle content of low-power radio galaxies in groups and clusters. MNRAS 438:3310–3321.  https://doi.org/10.1093/mnras/stt2436. arXiv:1312.5183ADSCrossRefGoogle Scholar
  34. Croston JH, Birkinshaw M, Hardcastle MJ, Worrall DM (2004) X-ray emission from the nuclei, lobes and hot-gas environments of two FR II radio galaxies. MNRAS 353:879–889.  https://doi.org/10.1111/j.1365-2966.2004.08118.x. arXiv:astro-ph/0406347ADSCrossRefGoogle Scholar
  35. Croston JH, Hardcastle MJ, Harris DE, Belsole E, Birkinshaw M, Worrall DM (2005) An x-ray study of magnetic field strengths and particle content in the lobes of FR II radio sources. ApJ 626:733–747.  https://doi.org/10.1086/430170. arXiv:astro-ph/0503203ADSCrossRefGoogle Scholar
  36. Croston JH, Hardcastle MJ, Birkinshaw M, Worrall DM, Laing RA (2008) An XMM-Newton study of the environments, particle content and impact of low-power radio galaxies. MNRAS 386:1709–1728.  https://doi.org/10.1111/j.1365-2966.2008.13162.x. arXiv:0802.4297ADSCrossRefGoogle Scholar
  37. Croton DJ (2006) Evolution in the black hole mass-bulge mass relation: a theoretical perspective. MNRAS 369:1808–1812 arXiv:astro-ph/0512375ADSCrossRefGoogle Scholar
  38. Davé R, Cen R, Ostriker JP, Bryan GL, Hernquist L, Katz N, Weinberg DH, Norman ML, O’Shea B (2001) Baryons in the warm-hot intergalactic medium. Astrophys J 552(2):473. http://stacks.iop.org/0004-637X/552/i=2/a=473
  39. Davidson K, Netzer H (1979) The emission lines of quasars and similar objects. Rev Mod Phys 51:715–766.  https://doi.org/10.1103/RevModPhys.51.715
  40. De Young DS (2006) The particle content of extragalactic jets. ApJ 648:200–208.  https://doi.org/10.1086/505861. arXiv:astro-ph/0605734
  41. Donnert J, Dolag K, Lesch H, Müller E (2009) Cluster magnetic fields from galactic outflows. MNRAS 392:1008–1021.  https://doi.org/10.1111/j.1365-2966.2008.14132.x. arXiv:0808.0919ADSCrossRefGoogle Scholar
  42. Donnert J, Dolag K, Cassano R, Brunetti G (2010) Radio haloes from simulations and hadronic models-II. The scaling relations of radio haloes. MNRAS 407:1565–1580.  https://doi.org/10.1111/j.1365-2966.2010.17065.x. arXiv:1003.0336ADSCrossRefGoogle Scholar
  43. Donnert J, Dolag K, Brunetti G, Cassano R (2013) Rise and fall of radio haloes in simulated merging galaxy clusters. Mon Not R Astron Soc 429(4):3564–3569. 10.1093/mnras/sts628. http://mnras.oxfordjournals.org/content/429/4/3564.abstract. http://mnras.oxfordjournals.org/content/429/4/3564.full.pdf+html
  44. Elitzur M (2012) On the unification of active galactic nuclei. ApJ 747:L33.  https://doi.org/10.1088/2041-8205/747/2/L33. arXiv:1202.1776ADSCrossRefGoogle Scholar
  45. Enßlin TA, Röttgering H (2002) The radio luminosity function of cluster radio halos. A&A 396:83–89.  https://doi.org/10.1051/0004-6361:20021382. arXiv:astro-ph/0209218ADSCrossRefGoogle Scholar
  46. Enßlin T, Pfrommer C, Miniati F, Subramanian K (2011) Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating. A&A 527:A99.  https://doi.org/10.1051/0004-6361/201015652. arXiv:1008.4717ADSCrossRefGoogle Scholar
  47. Fabian AC (1994) Cooling flows in clusters of galaxies. ARA&A 32:277–318.  https://doi.org/10.1146/annurev.aa.32.090194.001425ADSCrossRefGoogle Scholar
  48. Fabian AC (2012) Observational evidence of active galactic nuclei feedback. ARA&A 50:455–489 arXiv:1204.4114ADSCrossRefGoogle Scholar
  49. Fanaroff BL, Riley JM (1974) The morphology of extragalactic radio sources of high and low luminosity. MNRAS 167:31P–36P.  https://doi.org/10.1093/mnras/167.1.31PADSCrossRefGoogle Scholar
  50. Felten JE, Gould RJ, Stein WA, Woolf NJ (1966) X-rays from the Coma cluster of galaxies. ApJ 146:955–958.  https://doi.org/10.1086/148972ADSCrossRefGoogle Scholar
  51. Feretti L (2002) Observational properties of diffuse halos in clusters. In: Pramesh Rao A, Swarup G, Gopal-Krishna (eds) The universe at low radio frequencies, IAU symposium, vol 199, p 133Google Scholar
  52. Feretti L (2003) Clusters of galaxies in radio. In: Bowyer S, Hwang CY (eds) Matter and energy in clusters of galaxies, astronomical society of the pacific conference series, vol 301, p 143. arXiv:astro-ph/0301576
  53. Feretti L, Dallacasa D, Govoni F, Giovannini G, Taylor GB, Klein U (1999) The radio galaxies and the magnetic field in Abell 119. A&A 344:472–482 arXiv:astro-ph/9902019ADSGoogle Scholar
  54. Feretti L, Giovannini G, Govoni F, Murgia M (2012) Clusters of galaxies: observational properties of the diffuse radio emission. Astron Astrophys Rev 20(1):54.  https://doi.org/10.1007/s00159-012-0054-z. arXiv:1205.1919v1
  55. Fujita Y, Takizawa M, Sarazin CL (2003) Nonthermal emissions from particles accelerated by turbulence in clusters of galaxies. ApJ 584:190–202.  https://doi.org/10.1086/345599. arXiv:astro-ph/0210320ADSCrossRefGoogle Scholar
  56. Gaspari M, Brighenti F, Ruszkowski M (2013) Solving the cooling flow problem through mechanical AGN feedback. Astron Nachr 334:394.  https://doi.org/10.1002/asna.201211865. arXiv:1209.3305ADSCrossRefGoogle Scholar
  57. Gizani NAB, Leahy JP (2003) A multiband study of Hercules A-II. Multifrequency very large array imaging. MNRAS 342:399–421.  https://doi.org/10.1046/j.1365-8711.2003.06469.x. arXiv:astro-ph/0305600CrossRefGoogle Scholar
  58. Godfrey LEH, Shabala SS (2016) Mutual distance dependence drives the observed jet-power-radio-luminosity scaling relations in radio galaxies. MNRAS 456:1172–1184.  https://doi.org/10.1093/mnras/stv2712. arXiv:1511.06007
  59. Govoni F, Feretti L (2004) Magnetic fields in clusters of galaxies. Int J Mod Phys D 13:1549–1594.  https://doi.org/10.1142/S0218271804005080. arXiv:astro-ph/0410182ADSCrossRefzbMATHGoogle Scholar
  60. Govoni F, Enßlin TA, Feretti L, Giovannini G (2001) A comparison of radio and X-ray morphologies of four clusters of galaxies containing radio halos. A&A 369:441–449.  https://doi.org/10.1051/0004-6361:20010115. arXiv:astro-ph/0101418ADSCrossRefGoogle Scholar
  61. Govoni F, Murgia M, Feretti L, Giovannini G, Dolag K, Taylor GB (2006) The intracluster magnetic field power spectrum in Abell 2255. A&A 460:425–438.  https://doi.org/10.1051/0004-6361:20065964. arXiv:astro-ph/0608433ADSCrossRefGoogle Scholar
  62. Govoni F, Dolag K, Murgia M, Feretti L, Schindler S, Giovannini G, Boschin W, Vacca V, Bonafede A (2010) Rotation measures of radio sources in hot galaxy clusters. A&A 522:A105.  https://doi.org/10.1051/0004-6361/200913665. arXiv:1007.5207ADSCrossRefGoogle Scholar
  63. Graham I (1970) Observations of M87 at 5 GHz. MNRAS 149:319–339.  https://doi.org/10.1093/mnras/149.4.319ADSCrossRefGoogle Scholar
  64. Hardcastle MJ, Worrall DM (2000) The environments of FRII radio sources. MNRAS 319:562–572.  https://doi.org/10.1046/j.1365-8711.2000.03883.x. arXiv:astro-ph/0007260ADSCrossRefGoogle Scholar
  65. Hardcastle MJ, Worrall DM, Birkinshaw M, Laing RA, Bridle AH (2002) A Chandra observation of the X-ray environment and jet of 3C 31. MNRAS 334:182–192.  https://doi.org/10.1046/j.1365-8711.2002.05513.x. arXiv:astro-ph/0203374ADSCrossRefGoogle Scholar
  66. Hardcastle MJ, Worrall DM, Kraft RP, Forman WR, Jones C, Murray SS (2003) Radio and x-ray observations of the jet in Centaurus A. ApJ 593:169–183.  https://doi.org/10.1086/376519. arXiv:astro-ph/0304443ADSCrossRefGoogle Scholar
  67. Hardcastle MJ, Croston JH, Kraft RP (2007) A Chandra study of particle acceleration in the multiple hot spots of nearby radio galaxies. ApJ 669:893–904.  https://doi.org/10.1086/521696. arXiv:0707.2865ADSCrossRefGoogle Scholar
  68. Hargrave PJ, Ryle M (1974) Observations of Cygnus A with the 5-km radio telescope. MNRAS 166:305–327.  https://doi.org/10.1093/mnras/166.2.305ADSCrossRefGoogle Scholar
  69. Heckman TM, Best PN (2014) The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. ARA&A 52:589–660.  https://doi.org/10.1146/annurev-astro-081913-035722. arXiv:1403.4620ADSCrossRefGoogle Scholar
  70. Hook IM, McMahon RG, Boyle BJ, Irwin MJ (1994) The variability of optically selected quasars. MNRAS 268:305.  https://doi.org/10.1093/mnras/268.2.305ADSCrossRefGoogle Scholar
  71. Hudson DS, Mittal R, Reiprich TH, Nulsen PEJ, Andernach H, Sarazin CL (2010) What is a cool-core cluster? A detailed analysis of the cores of the X-ray flux-limited HIFLUGCS cluster sample. A&A 513:A37.  https://doi.org/10.1051/0004-6361/200912377. arXiv:0911.0409ADSCrossRefGoogle Scholar
  72. Ineson J, Croston JH, Hardcastle MJ, Mingo B (2017) A representative survey of the dynamics and energetics of FR II radio galaxies. MNRAS 467:1586–1607.  https://doi.org/10.1093/mnras/stx189. arXiv:1701.05612
  73. Ishwara-Chandra CH, Saikia DJ (1999) Giant radio sources. MNRAS 309:100–112.  https://doi.org/10.1046/j.1365-8711.1999.02835.x. arXiv:astro-ph/9902252ADSCrossRefGoogle Scholar
  74. Isobe N, Koyama S (2015) X-ray measurement of electron and magnetic-field energy densities in the west lobe of the giant radio galaxy 3C 236. PASJ 67:77.  https://doi.org/10.1093/pasj/psv046. arXiv:1505.02769
  75. Jeltema TE, Profumo S (2011) Implications of fermi observations for hadronic models of radio halos in clusters of galaxies. ApJ 728:53.  https://doi.org/10.1088/0004-637X/728/1/53. arXiv:1006.1648ADSCrossRefGoogle Scholar
  76. Jennison RC, Das Gupta MK (1953) Fine structure of the extra-terrestrial radio source Cygnus I. Nature 172:996–997.  https://doi.org/10.1038/172996a0ADSCrossRefGoogle Scholar
  77. Jones FC, Ellison DC (1991) The plasma physics of shock acceleration. Space Sci. Rev. 58:259–346.  https://doi.org/10.1007/BF01206003ADSCrossRefGoogle Scholar
  78. Kang H, Ryu D, Jones TW (2012) Diffusive shock acceleration simulations of radio relics. ApJ 756:97.  https://doi.org/10.1088/0004-637X/756/1/97. arXiv:1205.1895ADSCrossRefGoogle Scholar
  79. Kawakatu N, Kino M, Takahara F (2016) Evidence for a significant mixture of electron/positron pairs in FRII jets constrained by cocoon dynamics. MNRAS 457:1124–1136.  https://doi.org/10.1093/mnras/stw010. arXiv:1601.00771
  80. Khachikian EY, Weedman DW (1974) An atlas of Seyfert galaxies. ApJ 192:581–589.  https://doi.org/10.1086/153093CrossRefGoogle Scholar
  81. King I (1962) The structure of star clusters-I: an empirical density law. AJ 67:471.  https://doi.org/10.1086/108756
  82. Kokotanekov G, Wise M, Heald GH, McKean JP, Bîrzan L, Rafferty DA, Godfrey LEH, de Vries M, Intema HT, Broderick JW, Hardcastle MJ, Bonafede A, Clarke AO, van Weeren RJ, Röttgering HJA, Pizzo R, Iacobelli M, Orrú E, Shulevski A, Riseley CJ, Breton RP, Nikiel-Wroczyński B, Sridhar SS, Stewart AJ, Rowlinson A, van der Horst AJ, Harwood JJ, Gürkan G, Carbone D, Pandey-Pommier M, Tasse C, Scaife AMM, Pratley L, Ferrari C, Croston JH, Pandey VN, Jurusik W, Mulcahy DD (2017) LOFAR MSSS: the scaling relation between AGN cavity power and radio luminosity at low radio frequencies. arXiv:1706.00225
  83. Komberg BV, Pashchenko IN (2009) Giant radio galaxies: old long-lived quasars? Astron Rep 53:1086–1100.  https://doi.org/10.1134/S1063772909120026. arXiv:0901.3721ADSCrossRefGoogle Scholar
  84. Kravtsov AV, Borgani S (2012) Formation of galaxy clusters. ARA&A 50:353–409.  https://doi.org/10.1146/annurev-astro-081811-125502. arXiv:1205.5556
  85. Laing RA, Bridle AH (2002) Dynamical models for jet deceleration in the radio galaxy 3C 31. MNRAS 336:1161–1180.  https://doi.org/10.1046/j.1365-8711.2002.05873.x. arXiv:astro-ph/0207427ADSCrossRefGoogle Scholar
  86. Laing RA, Canvin JR, Cotton WD, Bridle AH (2006) Multifrequency observations of the jets in the radio galaxy NGC315. MNRAS 368:48–64.  https://doi.org/10.1111/j.1365-2966.2006.10099.x. arXiv:astro-ph/0601660ADSCrossRefGoogle Scholar
  87. Laing RA, Bridle AH, Parma P, Feretti L, Giovannini G, Murgia M, Perley RA (2008) Multifrequency VLA observations of the FR I radio galaxy 3C 31: morphology, spectrum and magnetic field. MNRAS 386:657–672.  https://doi.org/10.1111/j.1365-2966.2008.13091.x. arXiv:0803.2597ADSCrossRefGoogle Scholar
  88. Lara L, Cotton WD, Feretti L, Giovannini G, Marcaide JM, Márquez I, Venturi T (2001) A new sample of large angular size radio galaxies. I. The radio data. A&A 370:409–425.  https://doi.org/10.1051/0004-6361:20010254. arXiv:astro-ph/0102034CrossRefGoogle Scholar
  89. Li H, Lapenta G, Finn JM, Li S, Colgate SA (2006) Modeling the large-scale structures of astrophysical jets in the magnetically dominated limit. ApJ 643:92–100.  https://doi.org/10.1086/501499. arXiv:astro-ph/0604469ADSCrossRefGoogle Scholar
  90. Longair MS (2011) High energy astrophysicsGoogle Scholar
  91. Machalski J, Jamrozy M (2006) The new sample of giant radio sources. III. Statistical trends and correlations. A&A 454:95–102.  https://doi.org/10.1051/0004-6361:20054673. arXiv:astro-ph/0605011CrossRefGoogle Scholar
  92. Machalski J, Jamrozy M, Stawarz Ł, Kozieł-Wierzbowska D (2011) Understanding giant radio galaxy J1420–0545: large-scale morphology, environment, and energetics. ApJ 740:58.  https://doi.org/10.1088/0004-637X/740/2/58. arXiv:1107.5449ADSCrossRefGoogle Scholar
  93. Machalski J, Chyzy KT, Jamrozy M (2002) On the time evolution of giant radio galaxies. ArXiv Astrophys e-prints. arXiv:astro-ph/0210546
  94. Mack KH, Klein U, O’Dea CP, Willis AG (1997) Multi-frequency radio continuum mapping of giant radio galaxies. A&A S 123.  https://doi.org/10.1051/aas:1997166
  95. Mack KH, Klein U, O’Dea CP, Willis AG, Saripalli L (1998) Spectral indices, particle ages, and the ambient medium of giant radio galaxies. A&A 329:431–442ADSGoogle Scholar
  96. MacLeod CL, Ivezić Ž, Kochanek CS, Kozłowski S, Kelly B, Bullock E, Kimball A, Sesar B, Westman D, Brooks K, Gibson R, Becker AC, de Vries WH (2010) Modeling the time variability of SDSS stripe 82 quasars as a damped random walk. ApJ 721:1014–1033.  https://doi.org/10.1088/0004-637X/721/2/1014. arXiv:1004.0276ADSCrossRefGoogle Scholar
  97. Maiolino R, Rieke GH (1995) Low-luminosity and obscured Seyfert nuclei in nearby galaxies. ApJ 454:95.  https://doi.org/10.1086/176468ADSCrossRefGoogle Scholar
  98. Malarecki JM, Jones DH, Saripalli L, Staveley-Smith L, Subrahmanyan R (2015) Giant radio galaxies-II. Tracers of large-scale structure. MNRAS 449:955–986.  https://doi.org/10.1093/mnras/stv273. arXiv:1502.03954
  99. Mann AW, Ebeling H (2012) X-ray-optical classification of cluster mergers and the evolution of the cluster merger fraction. Mon Not R Astron Soc 420(3):2120–2138. 10.1111/j.1365-2966.2011.20170.x. http://mnras.oxfordjournals.org/content/420/3/2120.abstract. http://mnras.oxfordjournals.org/content/420/3/2120.full.pdf+html
  100. Marchegiani P, Perola GC, Colafrancesco S (2007) Testing the cosmic ray content in galaxy clusters. A&A 465:41–49.  https://doi.org/10.1051/0004-6361:20065977. arXiv:astro-ph/0701592ADSCrossRefGoogle Scholar
  101. Markevitch M (2012) Intergalactic shock fronts. World Scientific, pp 397–410.  https://doi.org/10.1142/9789814374552_0018
  102. Markevitch M, Govoni F, Brunetti G, Jerius D (2005) Bow shock and radio halo in the merging cluster A520. ApJ 627:733–738.  https://doi.org/10.1086/430695. arXiv:astro-ph/0412451ADSCrossRefGoogle Scholar
  103. Matthews TA, Sandage AR (1963) Optical identification of 3C 48, 3C 196, and 3C 286 with stellar objects. ApJ 138:30.  https://doi.org/10.1086/147615ADSCrossRefGoogle Scholar
  104. McNamara BR, Nulsen PEJ (2007) Heating hot atmospheres with active galactic nuclei. ARA&A 45:117–175.  https://doi.org/10.1146/annurev.astro.45.051806.110625. arXiv:0709.2152ADSCrossRefGoogle Scholar
  105. Miniati F, Jones TW, Kang H, Ryu D (2001) Cosmic-ray electrons in groups and clusters of galaxies: primary and secondary populations from a numerical cosmological simulation. Astrophys J 562(1):233. http://stacks.iop.org/0004-637X/562/i=1/a=233
  106. Mohr JJ, Evrard AE, Fabricant DG, Geller MJ (1995) Cosmological constraints from observed cluster x-ray morphologies. ApJ 447:8.  https://doi.org/10.1086/175852. arXiv:astro-ph/9501011ADSCrossRefGoogle Scholar
  107. Morganti R, Fanti R, Gioia IM, Harris DE, Parma P, de Ruiter H (1988) Low luminosity radio galaxies-effects of gaseous environment. A&A 189:11–26ADSGoogle Scholar
  108. Mulcahy DD, Horneffer A, Beck R, Heald G, Fletcher A, Scaife A, Adebahr B, Anderson JM, Bonafede A, Brüggen M, Brunetti G, Chyy KT, Conway J, Dettmar RJ, Enßlin T, Haverkorn M, Horellou C, Iacobelli M, Israel FP, Junklewitz H, Jurusik W, Köhler J, Kuniyoshi M, Orrú E, Paladino R, Pizzo R, Reich W, Röttgering HJA (2014) The nature of the low-frequency emission of M 51. First observations of a nearby galaxy with LOFAR. A&A 568:A74,  https://doi.org/10.1051/0004-6361/201424187. arXiv:1407.1312
  109. Mulchaey JS (2000) X-ray properties of groups of galaxies. ARA&A 38:289–335.  https://doi.org/10.1146/annurev.astro.38.1.289. arXiv:astro-ph/0009379ADSCrossRefGoogle Scholar
  110. Nakamura M, Li H, Li S (2006) Structure of magnetic tower jets in stratified atmospheres. ApJ 652:1059–1067.  https://doi.org/10.1086/508338. arXiv:astro-ph/0608326ADSCrossRefGoogle Scholar
  111. Netzer H (2015) Revisiting the unified model of active galactic nuclei. ARA&A 53:365–408.  https://doi.org/10.1146/annurev-astro-082214-122302. arXiv:1505.00811
  112. Nicastro F, Mathur S, Elvis M (2008) Missing baryons and the warm-hot intergalactic medium. Science 319:55.  https://doi.org/10.1126/science.1151400. arXiv:0712.2375ADSCrossRefGoogle Scholar
  113. Orrù E, van Velzen S, Pizzo RF, Yatawatta S, Paladino R, Iacobelli M, Murgia M, Falcke H, Morganti R, de Bruyn AG, Ferrari C, Anderson J, Bonafede A, Mulcahy D, Asgekar A, Avruch IM, Beck R, Bell ME, van Bemmel I, Bentum MJ, Bernardi G, Best P, Breitling F, Broderick JW, Brüggen M, Butcher HR, Ciardi B, Conway JE, Corstanje A, de Geus E, Deller A, Duscha S, Eislöffel J, Engels D, Frieswijk W, Garrett MA, Grießmeier J, Gunst AW, Hamaker JP, Heald G, Hoeft M, van der Horst AJ, Intema H, Juette E, Kohler J, Kondratiev VI, Kuniyoshi M, Kuper G, Loose M, Maat P, Mann G, Markoff S, McFadden R, McKay-Bukowski D, Miley G, Moldon J, Molenaar G, Munk H, Nelles A, Paas H, Pandey-Pommier M, Pandey VN, Pietka G, Polatidis AG, Reich W, Röttgering H, Rowlinson A, Scaife A, Schoenmakers A, Schwarz D, Serylak M, Shulevski A, Smirnov O, Steinmetz M, Stewart A, Swinbank J, Tagger M, Tasse C, Thoudam S, Toribio MC, Vermeulen R, Vocks C, van Weeren RJ, Wijers RAMJ, Wise MW, Wucknitz O (2015) Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620. A fresh view on a restarted AGN and doubeltjes. A&A 584:A112.  https://doi.org/10.1051/0004-6361/201526501. arXiv:1510.00577
  114. Owen FN, Ledlow MJ (1994) The FRI/Il break and the bivariate luminosity function in Abell clusters of galaxies. In: Bicknell GV, Dopita MA, Quinn PJ (eds) The physics of active galaxies. Astronomical Society of the Pacific Conference Series, vol 54, p 319Google Scholar
  115. Owen FN (1993) Steps toward a radio H-R diagram. In: Röser HJ, Meisenheimer K (eds) Jets in extragalactic radio sources, vol 421. Lecture Notes in Physics. Springer, Berlin, p 273.  https://doi.org/10.1007/3-540-57164-7_104
  116. Padovani P, Giommi P (1995) A sample-oriented catalogue of Bl-lacertae objects. MNRAS 277:1477.  https://doi.org/10.1093/mnras/277.4.1477. arXiv:astro-ph/9511065ADSCrossRefGoogle Scholar
  117. Paul S, John RS, Gupta P, Kumar H (2017) Understanding ‘galaxy groups’ as a unique structure in the universe. MNRAS 471:2–11.  https://doi.org/10.1093/mnras/stx1488. arXiv:1706.01916
  118. Perley RA, Bridle AH, Willis AG (1984) High-resolution VLA observations of the radio jet in NGC 6251. ApJS 54:291–334.  https://doi.org/10.1086/190931ADSCrossRefGoogle Scholar
  119. Peterson JR, Fabian AC (2006) X-ray spectroscopy of cooling clusters. Phys Rep 427:1–39.  https://doi.org/10.1016/j.physrep.2005.12.007. arXiv:astro-ph/0512549ADSCrossRefGoogle Scholar
  120. Peterson BM, Crenshaw DM, Meyers KA, Byard PL, Foltz CB (1984) Variability of the emission-line spectra and optical continua of Seyfert galaxies. II. ApJ 279:529–540.  https://doi.org/10.1086/161917ADSCrossRefGoogle Scholar
  121. Peterson BM, Wanders I, Bertram R, Hunley JF, Pogge RW, Wagner RM (1998) Optical continuum and emission-line variability of Seyfert 1 galaxies. ApJ 501:82–93.  https://doi.org/10.1086/305813. arXiv:astro-ph/9802104ADSCrossRefGoogle Scholar
  122. Petrosian V (2001) On the nonthermal emission and acceleration of electrons in coma and other clusters of galaxies. ApJ 557:560–572.  https://doi.org/10.1086/321557. arXiv:astro-ph/0101145ADSCrossRefGoogle Scholar
  123. Pirya A, Saikia DJ, Singh M, Chandola HC (2012) A study of the environments of large radio galaxies using SDSS. MNRAS 426:758–763.  https://doi.org/10.1111/j.1365-2966.2012.21656.x. arXiv:1207.1566ADSCrossRefGoogle Scholar
  124. Ponman TJ, Cannon DB, Navarro JF (1999) The thermal imprint of galaxy formation on X-ray clusters. Nature 397:135–137.  https://doi.org/10.1038/16410. arXiv:astro-ph/9810359ADSCrossRefGoogle Scholar
  125. Ponman TJ, Sanderson AJR, Finoguenov A (2003) The Birmingham-CfA cluster scaling project-III. Entropy and similarity in galaxy systems. MNRAS 343:331–342.  https://doi.org/10.1046/j.1365-8711.2003.06677.x. arXiv:astro-ph/0304048ADSCrossRefGoogle Scholar
  126. Rybicki GB, Lightman AP (1986) Radiative processes in astrophysicsGoogle Scholar
  127. Ryle M, Elsmore B, Neville AC (1965) High-resolution observations of the radio sources in Cygnus and Cassiopeia. Nature 205:1259–1262.  https://doi.org/10.1038/2051259a0ADSCrossRefGoogle Scholar
  128. Safouris V, Subrahmanyan R, Bicknell GV, Saripalli L (2009) MRCB0319-454: probing the large-scale structure with a giant radio galaxy. MNRAS 393:2–20.  https://doi.org/10.1111/j.1365-2966.2008.14181.x. arXiv:0812.2052ADSCrossRefGoogle Scholar
  129. Sanderson AJR, Ponman TJ, O’Sullivan E (2006) A statistically selected Chandra sample of 20 galaxy clusters-I. Temperature and cooling time profiles. MNRAS 372:1496–1508.  https://doi.org/10.1111/j.1365-2966.2006.10956.x. arXiv:astro-ph/0608423CrossRefGoogle Scholar
  130. Sanderson AJR, Edge AC, Smith GP (2009a) LoCuSS: the connection between brightest cluster galaxy activity, gas cooling and dynamical disturbance of X-ray cluster cores. MNRAS 398:1698–1705.  https://doi.org/10.1111/j.1365-2966.2009.15214.x. arXiv:0906.1808ADSCrossRefGoogle Scholar
  131. Sanderson AJR, O’Sullivan E, Ponman TJ (2009b) A statistically selected Chandra sample of 20 galaxy clusters-II. Gas properties and cool core/non-cool core bimodality. MNRAS 395:764–776.  https://doi.org/10.1111/j.1365-2966.2009.14613.x. arXiv:0902.1747ADSCrossRefGoogle Scholar
  132. Sarazin CL (1988) X-ray emission from clusters of galaxiesGoogle Scholar
  133. Saripalli L, Patnaik AR, Porcas RW, Graham DA (1997) Nuclear radio emission in megaparsec-size radio galaxies. A&A 328:78–82ADSGoogle Scholar
  134. Saripalli L, Hunstead RW, Subrahmanyan R, Boyce E (2005) A complete sample of megaparsec-sized double radio sources from the Sydney University Molonglo Sky Survey. AJ 130:896–922.  https://doi.org/10.1086/432507. arXiv:astro-ph/0507055
  135. Schmidt M (1963) 3C 273: a star-like object with large red-shift. Nature 197:1040.  https://doi.org/10.1038/1971040a0ADSCrossRefGoogle Scholar
  136. Schoenmakers AP, Mack KH, Lara L, Röttgering HJA, de Bruyn AG, van der Laan H, Giovannini G (1998) WNB 0313+683: analysis of a newly discovered giant radio galaxy. A&A 336:455–478 arXiv:astro-ph/9805356ADSGoogle Scholar
  137. Schoenmakers AP, Mack KH, de Bruyn AG, Röttgering HJA, Klein U, van der Laan H (2000) A new sample of giant radio galaxies from the WENSS survey. II. A multi-frequency radio study of a complete sample: properties of the radio lobes and their environment. A&A S 146:293–322.  https://doi.org/10.1051/aas:2000267. arXiv:astro-ph/0008246ADSCrossRefGoogle Scholar
  138. Shelton DL, Hardcastle MJ, Croston JH (2011) The dynamics and environmental impact of 3C 452. MNRAS 418:811–819.  https://doi.org/10.1111/j.1365-2966.2011.19533.x. arXiv:1108.3753ADSCrossRefGoogle Scholar
  139. Sijacki D, Springel V, Di Matteo T, Hernquist L (2007) A unified model for AGN feedback in cosmological simulations of structure formation. MNRAS 380:877–900 arXiv:0705.2238ADSCrossRefGoogle Scholar
  140. Smith BD, Hallman EJ, Shull JM, O’Shea BW (2011) The nature of the warm/hot intergalactic medium. I. Numerical methods, convergence, and O VI absorption. ApJ 731:6.  https://doi.org/10.1088/0004-637X/731/1/6. arXiv:1009.0261
  141. Sommer MW, Basu K, Intema H, Pacaud F, Bonafede A, Babul A, Bertoldi F (2017) Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies. MNRAS 466:996–1009.  https://doi.org/10.1093/mnras/stw3015. arXiv:1610.07875
  142. Subrahmanyan R, Saripalli L, Safouris V, Hunstead RW (2008) On the relationship between a giant radio galaxy MSH 05–22 and the ambient large-scale galaxy structure. ApJ 677:63–78.  https://doi.org/10.1086/529007. arXiv:0801.3910ADSCrossRefGoogle Scholar
  143. Sun M (2012) Hot gas in galaxy groups: recent observations. New J Phys 14(4):045004.  https://doi.org/10.1088/1367-2630/14/4/045004. arXiv:1203.4228CrossRefGoogle Scholar
  144. Tully RB (2015) Galaxy groups: a 2MASS catalog. AJ 149:171.  https://doi.org/10.1088/0004-6256/149/5/171. arXiv:1503.03134
  145. Tully RB (1987) Nearby groups of galaxies. II-an all-sky survey within 3000 km per second. ApJ 321:280–304.  https://doi.org/10.1086/165629ADSCrossRefGoogle Scholar
  146. Turland BD (1975) Observations of M87 at 5 GHz with the 5-km telescope. MNRAS 170:281–294.  https://doi.org/10.1093/mnras/170.2.281ADSCrossRefGoogle Scholar
  147. van Weeren RJ, Andrade-Santos F, Dawson WA, Golovich N, Lal DV, Kang H, Ryu D, Brìggen M, Ogrean GA, Forman WR, Jones C, Placco VM, Santucci RM, Wittman D, Jee MJ, Kraft RP, Sobral D, Stroe A, Fogarty K (2017) The case for electron re-acceleration at galaxy cluster shocks. Nat Astron 1:0005.  https://doi.org/10.1038/s41550-016-0005. arXiv:1701.01439
  148. van Weeren RJ, Brunetti G, Brüggen M, Andrade-Santos F, Ogrean GA, Williams WL, Röttgering HJA, Dawson WA, Forman WR, de Gasperin F, Hardcastle MJ, Jones C, Miley GK, Rafferty DA, Rudnick L, Sabater J, Sarazin CL, Shimwell TW, Bonafede A, Best PN, Bîrzan L, Cassano R, Chyy KT, Croston JH, Dijkema TJ, Enßlin T, Ferrari C, Heald G, Hoeft M, Horellou C, Jarvis MJ, Kraft RP, Mevius M, Intema HT, Murray SS, Orrú E, Pizzo R, Sridhar SS, Simionescu A, Stroe A, van der Tol S, White GJ (2016) LOFAR, VLA, and Chandra observations of the toothbrush galaxy cluster. ApJ 818:204.  https://doi.org/10.3847/0004-637X/818/2/204. arXiv:1601.06029
  149. Vanden Berk DE, Wilhite BC, Kron RG, Anderson SF, Brunner RJ, Hall PB, Ivezić Ž, Richards GT, Schneider DP, York DG, Brinkmann JV, Lamb DQ, Nichol RC, Schlegel DJ (2004) The ensemble photometric variability of \(\sim \)25,000 quasars in the sloan digital sky survey. ApJ 601:692–714.  https://doi.org/10.1086/380563. arXiv:astro-ph/0310336ADSCrossRefGoogle Scholar
  150. Vazza F (2016) The quest for extragalactic magnetic fields. In: Proceedings of the neutrino oscillation workshop, p 47. arXiv:1611.00043
  151. Vazza F, Brüggen M (2014) Do radio relics challenge diffusive shock acceleration? MNRAS 437:2291–2296.  https://doi.org/10.1093/mnras/stt2042. arXiv:1310.5707ADSCrossRefGoogle Scholar
  152. Vazza F, Brüggen M, Wittor D, Gheller C, Eckert D, Stubbe M (2016) Constraining the efficiency of cosmic ray acceleration by cluster shocks. MNRAS 459:70–83.  https://doi.org/10.1093/mnras/stw584. arXiv:1603.02688
  153. Venturi T, Rossetti M, Brunetti G, Farnsworth D, Gastaldello F, Giacintucci S, Lal DV, Rudnick L, Shimwell TW, Eckert D, Molendi S, Owers M (2017) The two-component giant radio halo in the galaxy cluster Abell 2142. A&A 603:A125.  https://doi.org/10.1051/0004-6361/201630014. arXiv:1703.06802
  154. Voit GM (2005) Tracing cosmic evolution with clusters of galaxies. Rev Mod Phys 77:207–258.  https://doi.org/10.1103/RevModPhys.77.207. arXiv:astro-ph/0410173
  155. Wen ZL, Han JL (2013) Substructure and dynamical state of 2092 rich clusters of galaxies derived from photometric data. MNRAS 436:275–293.  https://doi.org/10.1093/mnras/stt1581. arXiv:1307.0568ADSCrossRefGoogle Scholar
  156. Willson MAG (1970) Radio observations of the cluster of galaxies in Coma Berenices-the 5C4 survey. MNRAS 151:1–44.  https://doi.org/10.1093/mnras/151.1.1ADSCrossRefGoogle Scholar
  157. Worrall DM, Birkinshaw M (2000) X-ray-emitting atmospheres of B2 radio galaxies. ApJ 530:719–732.  https://doi.org/10.1086/308411. arXiv:astro-ph/9910141ADSCrossRefGoogle Scholar
  158. Yuan ZS, Han JL, Wen ZL (2015) The scaling relations and the fundamental plane for radio halos and relics of galaxy clusters. ApJ 813(1):77. http://stacks.iop.org/0004-637X/813/i=1/a=77
  159. Zandanel F, Pfrommer C, Prada F (2014) On the physics of radio haloes in galaxy clusters: scaling relations and luminosity functions. MNRAS 438:124–144.  https://doi.org/10.1093/mnras/stt2250. arXiv:1311.4795ADSCrossRefGoogle Scholar
  160. Zensus JA (1989) Superluminal motion in quasars and Bl-lacertae objects. In: Maraschi L, Maccacaro T, Ulrich MH (eds) BL Lac objects, vol 334. Lecture Notes in Physics. Springer, Berlin, p 3.  https://doi.org/10.1007/BFb0031137

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Jodrell Bank Centre for Astrophysics, School of Physics and AstronomyThe University of ManchesterManchesterUK

Personalised recommendations