Skip to main content

The Cervicothoracic Junction

  • Chapter
  • First Online:
Degenerative Cervical Myelopathy and Radiculopathy

Abstract

The cervicothoracic junction (CTJ) serves as the interface between the flexible, lordotic cervical spine and the more rigid, kyphotic thoracic spine. It is comprised of the C7 and T1 vertebrae and the intervening discs, ribs, and spanning ligaments. The varying anatomy and load-bearing properties of these two spine regions require careful consideration. The transition from the mobile cervical spine to immobile thoracic spine exposes the CTJ to large forces, making it susceptible to trauma and requiring unique biomechanical considerations when planning stabilization constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeanneret B, et al. Posterior stabilization of the cervical spine with hook plates. Spine (Phila Pa 1976). 1991;16(3 Suppl):S56–63.

    Article  CAS  Google Scholar 

  2. Espinoza-Larios A, et al. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques. Spine J. 2007;7(2):194–204.

    Article  Google Scholar 

  3. Mihir B, et al. Anterior instrumentation of the cervicothoracic vertebrae: approach based on clinical and radiologic criteria. Spine (Phila Pa 1976). 2006;31(9):E244–9.

    Article  Google Scholar 

  4. Mai HT, et al. Accessibility of the cervicothoracic junction through an anterior approach: an MRI-based algorithm. Spine (Phila Pa 1976). 2016;41(1):69–73.

    Article  Google Scholar 

  5. Falavigna A, Righesso O, Teles AR. Anterior approach to the cervicothoracic junction: proposed indication for manubriotomy based on preoperative computed tomography findings. J Neurosurg Spine. 2011;15(1):38–47.

    Article  Google Scholar 

  6. Schlenk RP, Kowalski RJ, Benzel EC. Biomechanics of spinal deformity. Neurosurg Focus. 2003;14(1):e2.

    PubMed  Google Scholar 

  7. Lapsiwala S, Benzel E. Surgical management of cervical myelopathy dealing with the cervical-thoracic junction. Spine J. 2006;6(6 Suppl):268S–73S.

    Article  Google Scholar 

  8. Liu S, et al. Impact of dynamic alignment, motion, and center of rotation on myelopathy grade and regional disability in cervical spondylotic myelopathy. J Neurosurg Spine. 2015;23(6):690–700.

    Article  Google Scholar 

  9. Anderson PA, et al. Laminectomy and fusion for the treatment of cervical degenerative myelopathy. J Neurosurg Spine. 2009;11(2):150–6.

    Article  Google Scholar 

  10. Mummaneni PV, Deutsch H, Mummaneni VP. Cervicothoracic kyphosis. Neurosurg Clin N Am. 2006;17(3):277–87. vi.

    Article  Google Scholar 

  11. Steinmetz MP, et al. Regional instability following cervicothoracic junction surgery. J Neurosurg Spine. 2006;4(4):278–84.

    Article  Google Scholar 

  12. Bechara BP, et al. In vivo analysis of cervical range of motion after 4- and 5-level subaxial cervical spine fusion. Spine (Phila Pa 1976). 2012;37(1):E23–9.

    Article  Google Scholar 

  13. Mazel C, et al. Posterior cervicothoracic instrumentation in spine tumors. Spine (Phila Pa 1976). 2004;29(11):1246–53.

    Article  Google Scholar 

  14. Post NH, et al. Unique features of herniated discs at the cervicothoracic junction: clinical presentation, imaging, operative management, and outcome after anterior decompressive operation in 10 patients. Neurosurgery. 2006;58(3):497–501. discussion 497-501.

    Article  Google Scholar 

  15. Kaya RA, et al. A perspective for the selection of surgical approaches in patients with upper thoracic and cervicothoracic junction instabilities. Surg Neurol. 2006;65(5):454–63. discussion 463.

    Article  Google Scholar 

  16. Cheng I, et al. Biomechanical determination of distal level for fusions across the cervicothoracic junction. Global Spine J. 2015;5(4):282–6.

    Article  Google Scholar 

  17. Highsmith JM, et al. Treatment of cervical stenotic myelopathy: a cost and outcome comparison of laminoplasty versus laminectomy and lateral mass fusion. J Neurosurg Spine. 2011;14(5):619–25.

    Article  Google Scholar 

  18. Guppy KH, et al. Reoperation rates for symptomatic nonunions in posterior cervicothoracic fusions with and without bone morphogenetic protein in a cohort of 450 patients. J Neurosurg Spine. 2016;25(3):309–17.

    Article  Google Scholar 

  19. Goode AP, et al. Complications, revision fusions, readmissions, and utilization over a 1-year period after bone morphogenetic protein use during primary cervical spine fusions. Spine J. 2014;14(9):2051–9.

    Article  Google Scholar 

  20. Hamilton DK, et al. Safety, efficacy, and dosing of recombinant human bone morphogenetic protein-2 for posterior cervical and cervicothoracic instrumented fusion with a minimum 2-year follow-up. Neurosurgery. 2011;69(1):103–11. discussion 111.

    Article  Google Scholar 

  21. Tatsumi RL, et al. Mechanical comparison of posterior instrumentation constructs for spinal fixation across the cervicothoracic junction. Spine (Phila Pa 1976). 2007;32(10):1072–6.

    Article  Google Scholar 

  22. Eleraky M, et al. Biomechanical comparison of posterior cervicothoracic instrumentation techniques after one-level laminectomy and facetectomy. J Neurosurg Spine. 2010;13(5):622–9.

    Article  Google Scholar 

  23. Yang JS, Buchowski JM, Verma V. Construct type and risk factors for pseudarthrosis at the cervicothoracic junction. Spine (Phila Pa 1976). 2015;40(11):E613–7.

    Article  Google Scholar 

  24. Scheer JK, et al. Biomechanical analysis of cervicothoracic junction osteotomy in cadaveric model of ankylosing spondylitis: effect of rod material and diameter. J Neurosurg Spine. 2011;14(3):330–5.

    Article  Google Scholar 

  25. Rhee JM, Kraiwattanapong C, Hutton WC. A comparison of pedicle and lateral mass screw construct stiffnesses at the cervicothoracic junction: a biomechanical study. Spine (Phila Pa 1976). 2005;30(21):E636–40.

    Article  Google Scholar 

  26. Hojo Y, et al. A multicenter study on accuracy and complications of freehand placement of cervical pedicle screws under lateral fluoroscopy in different pathological conditions: CT-based evaluation of more than 1,000 screws. Eur Spine J. 2014;23(10):2166–74.

    Article  Google Scholar 

  27. Singh PK, et al. Computed tomography-guided C2 pedicle screw placement for treatment of unstable hangman fractures. Spine (Phila Pa 1976). 2014;39(18):E1058–65.

    Article  Google Scholar 

  28. Nottmeier EW, Pirris SM. Placement of thoracic transvertebral pedicle screws using 3D image guidance. J Neurosurg Spine. 2013;18(5):479–83.

    Article  Google Scholar 

  29. Hart RA, et al. Pedicle screw placement in the thoracic spine: a comparison of image-guided and manual techniques in cadavers. Spine (Phila Pa 1976). 2005;30(12):E326–31.

    Article  Google Scholar 

  30. Clark AJ, et al. Comparative sensitivity of intraoperative motor evoked potential monitoring in predicting postoperative neurologic deficits: nondegenerative versus degenerative myelopathy. Global Spine J. 2016;6(5):452–8.

    Article  Google Scholar 

  31. Ziewacz JE, et al. The design, development, and implementation of a checklist for intraoperative neuromonitoring changes. Neurosurg Focus. 2012;33(5):E11.

    Article  Google Scholar 

  32. Jeanneret B, Gebhard JS, Magerl F. Transpedicular screw fixation of articular mass fracture-separation: results of an anatomical study and operative technique. J Spinal Disord. 1994;7(3):222–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen V. Mummaneni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DiGiorgio, A.M., Virk, M.S., Hu, MH., Alazzeh, M., Thottempudi, S., Mummaneni, P.V. (2019). The Cervicothoracic Junction. In: Kaiser, M., Haid, R., Shaffrey, C., Fehlings, M. (eds) Degenerative Cervical Myelopathy and Radiculopathy . Springer, Cham. https://doi.org/10.1007/978-3-319-97952-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97952-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97951-9

  • Online ISBN: 978-3-319-97952-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics