Skip to main content

Cervical Laminectomy and Fusion

  • Chapter
  • First Online:
Degenerative Cervical Myelopathy and Radiculopathy
  • 1366 Accesses

Abstract

Degenerative cervical myelopathy (DCM) is a result of a combination of compressive, dynamic, and biomolecular factors on the spinal cord. Compression arises from narrowing of the ventral/dorsal cervical canal, disc degeneration, spondylosis, and ossification of the posterior longitudinal ligament (PLL) and ligamentum flavum leading to direct pressure on the spinal cord. Dynamic forces arise from abnormal cervical spinal alignment or motion as in cases with degenerative spondylolisthesis, subluxation, or kyphotic deformity. Physiological narrowing of canal diameter with neck extension as well as strain/stretch forces placed on the spinal cord with physiological neck movements also contributes to dynamic pathophysiological stresses. Finally, ischemic injury from chronic compression, subsequent release of inflammatory factors, glutamate-mediated excitotoxicity, and eventually neuronal apoptosis contribute to CSM on a molecular and cellular level. The goal of surgery, in turn, is first to decompress the neural structures and reduce the effect of static and biomolecular factors and, second, to stabilize the dynamic factors if such need exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Wilson JR, Tetreault LA, Kim J, et al. State of the art in degenerative cervical myelopathy: an update on current clinical evidence. Neurosurgery. 2017;80:S33–s45.

    Article  Google Scholar 

  2. Steinmetz MP, Benzel EC. Benzel’s spine surgery: techniques, complication avoidance, and management. 4th ed. Philadelphia: Elsevier; 2016.

    Google Scholar 

  3. Divi SN, Mikhael MM. Use of allogenic mesenchymal cellular bone matrix in anterior and posterior cervical spinal fusion: a case series of 21 patients. Asian Spine J. 2017;11:454–62.

    Article  Google Scholar 

  4. Sawin PD, Traynelis VC, Menezes AH. A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg. 1998;88:255–65.

    Article  CAS  Google Scholar 

  5. Guzman JZ, Merrill RK, Kim JS, et al. Bone morphogenetic protein use in spine surgery in the United States: how have we responded to the warnings? Spine J Off J North Am Spine Soc. 2017;17(9):1247–54.

    Article  Google Scholar 

  6. Hamilton DK, Smith JS, Reames DL, et al. Safety, efficacy, and dosing of recombinant human bone morphogenetic protein-2 for posterior cervical and cervicothoracic instrumented fusion with a minimum 2-year follow-up. Neurosurgery. 2011;69:103–11; discussion 11.

    Article  Google Scholar 

  7. Hansraj KK. Stem cells in spine surgery. Surg Technol Int. 2016;XXIX:348–58.

    Google Scholar 

  8. McAllister BD, Rebholz BJ, Wang JC. Is posterior fusion necessary with laminectomy in the cervical spine? Surg Neurol Int. 2012;3:S225–31.

    Article  Google Scholar 

  9. Kim DK, Kim JY, Kim DY, et al. Risk factors of proximal junctional kyphosis after multilevel fusion surgery: more than 2 years follow-up data. J Korean Neurosurg Soc. 2017;60:174–80.

    Article  Google Scholar 

  10. Liu FY, Wang T, Yang SD, et al. Incidence and risk factors for proximal junctional kyphosis: a meta-analysis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2016;25:2376–83.

    Article  Google Scholar 

  11. Park SJ, Lee CS, Chung SS, et al. Different risk factors of proximal junctional kyphosis and proximal junctional failure following long instrumented fusion to the sacrum for adult spinal deformity: survivorship analysis of 160 patients. Neurosurgery. 2017;80:279–86.

    PubMed  Google Scholar 

  12. Yagi M, King AB, Boachie-Adjei O. Incidence, risk factors, and natural course of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Minimum 5 years of follow-up. Spine. 2012;37:1479–89.

    Article  Google Scholar 

  13. Yagi M, Rahm M, Gaines R, et al. Characterization and surgical outcomes of proximal junctional failure in surgically treated patients with adult spinal deformity. Spine. 2014;39:E607–14.

    Article  Google Scholar 

  14. Gore DR, Sepic SB, Gardner GM. Roentgenographic findings of the cervical spine in asymptomatic people. Spine. 1986;11:521–4.

    Article  CAS  Google Scholar 

  15. Hardacker JW, Shuford RF, Capicotto PN, et al. Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine. 1997;22:1472–80; discussion 80.

    Article  CAS  Google Scholar 

  16. Iyer S, Lenke LG, Nemani VM, et al. Variations in occipitocervical and cervicothoracic alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine. 2016;41:1837–44.

    Article  Google Scholar 

  17. Janusz P, Tyrakowski M, Yu H, et al. Reliability of cervical lordosis measurement techniques on long-cassette radiographs. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2016;25:3596–601.

    Article  Google Scholar 

  18. Lee SH, Kim KT, Seo EM, et al. The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults. J Spinal Disord Tech. 2012;25:E41–7.

    Article  Google Scholar 

  19. Hey HWD, Teo AQA, Tan KA, et al. How the spine differs in standing and in sitting-important considerations for correction of spinal deformity. Spine J Off J North Am Spine Soc. 2017;17:799–806.

    Article  Google Scholar 

  20. Tan LA, Riew KD, Traynelis VC. Cervical spine deformity-part 1: biomechanics, radiographic parameters, and classification. Neurosurgery. 2017;81:197–203.

    Article  Google Scholar 

  21. Tang JA, Scheer JK, Smith JS, et al. The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery. 2012;71:662–9; discussion 9.

    Article  Google Scholar 

  22. Tang JA, Scheer JK, Smith JS, et al. The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery. 2015;76(Suppl 1):S14–21; discussion S.

    Article  Google Scholar 

  23. Li J, Qin S, Li Y, et al. Modic changes of the cervical spine: T1 slope and its impact on axial neck pain. J Pain Res. 2017;10:2041–5.

    Article  Google Scholar 

  24. Oe S, Togawa D, Nakai K, et al. The influence of age and sex on cervical spinal alignment among volunteers aged over 50. Spine. 2015;40:1487–94.

    Article  Google Scholar 

  25. Protopsaltis TS, Lafage R, Vira S, et al. Novel angular measures of cervical deformity account for upper cervical compensation and sagittal alignment. Clin Spine Surg. 2017;30:E959–e67.

    Article  Google Scholar 

  26. Cabraja M, Abbushi A, Koeppen D, et al. Comparison between anterior and posterior decompression with instrumentation for cervical spondylotic myelopathy: sagittal alignment and clinical outcome. Neurosurg Focus. 2010;28:E15.

    Article  Google Scholar 

  27. Hann S, Chalouhi N, Madineni R, et al. An algorithmic strategy for selecting a surgical approach in cervical deformity correction. Neurosurg Focus. 2014;36:E5.

    Article  Google Scholar 

  28. Kim DH, Vaccaro AR, Dickman CA, Cho D, Lee S, Kim I. Surgical anatomy and techniques to the spine. 2nd ed. Philadelphia: Saunders Elsevier; 2006.

    Google Scholar 

  29. Singh K, Vaccaro AR. Minimally invasive spine surgery: advanced surgical techniques. 1st ed. New Delhi: Jaypee Brothers; 2016.

    Book  Google Scholar 

  30. Stemper BD, Marawar SV, Yoganandan N, et al. Quantitative anatomy of subaxial cervical lateral mass: an analysis of safe screw lengths for Roy-Camille and magerl techniques. Spine. 2008;33:893–7.

    Article  Google Scholar 

  31. Xu R, Haman SP, Ebraheim NA, et al. The anatomic relation of lateral mass screws to the spinal nerves. A comparison of the Magerl, Anderson, and An techniques. Spine. 1999;24:2057–61.

    Article  CAS  Google Scholar 

  32. Joseffer SS, Post N, Cooper PR, et al. Minimally invasive atlantoaxial fixation with a polyaxial screw-rod construct: technical case report. Neurosurgery. 2006;58:ONS-E375; discussion ONS-E.

    Google Scholar 

  33. Winder MJ, Thomas KC. Minimally invasive versus open approach for cervical laminoforaminotomy. Can J Neurol Sci. 2011;38:262–7.

    Article  Google Scholar 

  34. Yabuki S, Kikuchi S. Endoscopic partial laminectomy for cervical myelopathy. J Neurosurg Spine. 2005;2:170–4.

    Article  Google Scholar 

  35. Mikhael MM, Celestre PC, Wolf CF, et al. Minimally invasive cervical spine foraminotomy and lateral mass screw placement. Spine. 2012;37:E318–22.

    Article  Google Scholar 

  36. Wang MY, Levi AD. Minimally invasive lateral mass screw fixation in the cervical spine: initial clinical experience with long-term follow-up. Neurosurgery. 2006;58:907–12; discussion −12.

    Article  Google Scholar 

  37. Ahmad F, Sherman JD, Wang MY. Percutaneous trans-facet screws for supplemental posterior cervical fixation. World Neurosurg. 2012;78:716. e1–4.

    PubMed  Google Scholar 

  38. Terterov S, Taghva A, Khalessi AA, et al. Symptomatic vertebral artery compression by the rod of a C1-C2 posterior fusion construct: case report and review of the literature. Spine. 2011;36:E678–81.

    Article  Google Scholar 

  39. Neo M, Fujibayashi S, Miyata M, et al. Vertebral artery injury during cervical spine surgery: a survey of more than 5600 operations. Spine. 2008;33:779–85.

    Article  Google Scholar 

  40. Albert TJ, Vacarro A. Postlaminectomy kyphosis. Spine. 1998;23:2738–45.

    Article  CAS  Google Scholar 

  41. Gu Y, Cao P, Gao R, et al. Incidence and risk factors of C5 palsy following posterior cervical decompression: a systematic review. PLoS One. 2014;9:e101933.

    Article  Google Scholar 

  42. Katsumi K, Yamazaki A, Watanabe K, et al. Analysis of C5 palsy after cervical open-door laminoplasty: relationship between C5 palsy and foraminal stenosis. J Spinal Disord Tech. 2013;26:177–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Januszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Januszewski, J., Uribe, J.S. (2019). Cervical Laminectomy and Fusion. In: Kaiser, M., Haid, R., Shaffrey, C., Fehlings, M. (eds) Degenerative Cervical Myelopathy and Radiculopathy . Springer, Cham. https://doi.org/10.1007/978-3-319-97952-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97952-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97951-9

  • Online ISBN: 978-3-319-97952-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics