Advertisement

How to Prove KDM Security of BHHO

  • Hayato TadaEmail author
  • Akinaga Ueda
  • Kaoru Kurosawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11049)

Abstract

Boneh et al. showed a KDM secure public-key encryption scheme under the DDH assumption. The KDM security means that even when any affine function of the secret keys is encrypted, it is guaranteed to be secure. In this paper, we show a more tight proof. The reduction loss to the DDH assumption is \(2\slash 3\) times smaller in the KDM\(^{(1)}\)-security, and \(5\slash 6\) times smaller in the KDM\(^{(n)}\)-security, where n is the number of users. Our proof is also conceptually simpler.

Keywords

Public key Encryption scheme KDM security Matrix DDH 

References

  1. 1.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_35CrossRefGoogle Scholar
  2. 2.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability - (or: quadratic residuosity strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_1CrossRefGoogle Scholar
  3. 3.
    Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_13CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_7CrossRefGoogle Scholar
  5. 5.
    Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33167-1_36CrossRefGoogle Scholar
  6. 6.
    Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_28CrossRefGoogle Scholar
  7. 7.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)Google Scholar
  8. 8.
    Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 159–179. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49387-8_7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ibaraki UniversityHitachiJapan

Personalised recommendations